55 research outputs found

    The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    Full text link
    We compare Fourier spectra of photospheric velocity fields from very high resolution IMaX observations to those from recent 3D numerical magnetoconvection models. We carry out a proper comparison by synthesizing spectral lines from the numerical models and then applying to them the adequate residual instrumental degradation that affects the observational data. Also, the validity of the usual observational proxies is tested by obtaining synthetic observations from the numerical boxes and comparing the velocity proxies to the actual velocity values from the numerical grid. For the observations, data from the SUNRISE/IMaX instrument with about 120 km spatial resolution are used, thus allowing the calculation of observational Fourier spectra well into the subgranular range. For the simulations, we use four series of runs obtained with the STAGGER code and synthesize the IMaX spectral line (FeI 5250.2 A) from them. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (horizontal component). A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log(tau500tau_{500}) = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at tau500tau_{500} = 1) for the horizontal velocities as a result of the coarseness of the LCT procedure.Comment: 12 pages, 9 figures, accepted in A&

    Analysis of altimetric movements of the seismic region of Chlef by Monte Carlo method

    Get PDF
    Comunicación presntada a la 3ª Asamblea Hispano-Portuguesa de Geodesia y Geofísica = 3ª Assembleia Luso-Espanhola de Geodesia e Geofisica, celebrada en Valencia entre el 4 y el 8 de febrero de 2002.1n the region o/ Ch/ef (ex El AsnC/l17,Northwest ofAlgeriat numerous geodesi campaigns have been mude for the study ofterrestrial crustal movements associated 10 the S ismicity of the region. The results of the works of different timesof leveling measure.ss..¿ J of j 976, /986, /987 are comparad with the results obtained in 198/, /988 and /98, rhey confirm the tendency lo ,VW-SE overthrust and they indicate the persistence ofre/ative 1110Vel17el1i/ns the same sense. The evaluation and the simultaneous representa/ion of these deformations and o/ their errors are made by the method of Monte Carlo that allows /0 simulate a great number ofseries ofmeasurec_c' e' This method has pul in evidence the existence of significant movements in 90% of the simulations of Monte Carlo about {he speed of the altimetric displacements of different sections of leveling net in the region. In this work the results obtained in the different catnpaign are presentedPeer reviewe

    Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector

    Full text link
    Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospheric magnetic vector from the inversion of ideal and noisy Stokes parameters influence the extrapolation of nonlinear force-free magnetic fields. Methods: We compute nonlinear force-free magnetic fields based on simulated vector magnetograms, which have been produced by the inversion of Stokes profiles, computed froma 3-D radiation MHD simulation snapshot. These extrapolations are compared with extrapolations starting directly from the field in the MHD simulations, which is our reference. We investigate how line formation and instrumental effects such as noise, limited spatial resolution and the effect of employing a filter instrument influence the resulting magnetic field structure. The comparison is done qualitatively by visual inspection of the magnetic field distribution and quantitatively by different metrics. Results: The reconstructed field is most accurate if ideal Stokes data are inverted and becomes less accurate if instrumental effects and noise are included. The results demonstrate that the non-linear force-free field extrapolation method tested here is relatively insensitive to the effects of noise in measured polarization spectra at levels consistent with present-day instruments. Conclusions heading: Our results show that we can reconstruct the coronal magnetic field as a nonlinear force-free field from realistic photospheric measurements with an accuracy of a few percent, at least in the absence of sunspots.Comment: A&A, accepted, 9 Pages, 4 Figure

    Expansion of magnetic flux concentrations: a comparison of Hinode SOT d ata and models

    Full text link
    Context: The expansion of network magnetic fields with height is a fundamental property of flux tube models. A rapid expansion is required to form a magnetic canopy. Aims: We characterize the observed expansion properties of magnetic network elements and compare them with the thin flux tube and sheet approximations, as well as with magnetoconvection simulations. Methods: We used data from the Hinode SOT NFI NaD1 channel and spectropolarimeter to study the appearance of magnetic flux concentrations seen in circular polarization as a function of position on the solar disk. We compared the observations with synthetic observables from models based on the thin flux tube approximation and magnetoconvection simulations with two different upper boundary conditions for the magnetic field (potential and vertical). Results: The observed circular polarization signal of magnetic flux concentrations changes from unipolar at disk center to bipolar near the limb, which implies an expanding magnetic field. The observed expansion agrees with expansion properties derived from the thin flux sheet and tube approximations. Magnetoconvection simulations with a potential field as the upper boundary condition for the magnetic field also produce bipolar features near the limb while a simulation with a vertical field boundary condition does not. Conclusions: The near-limb apparent bipolar magnetic features seen in high-resolution Hinode observations can be interpreted using a simple flux sheet or tube model. This lends further support to the idea that magnetic features with vastly varying sizes have similar relative expansion rates. The numerical simulations presented here are less useful in interpreting the expansion since the diagnostics we are interested in are strongly influenced by the choice of the upper boundary condition for the magnetic field in the purely photospheric simulations.Comment: accepted for publication in A&

    Simulation of a flux emergence event and comparison with observations by Hinode

    Full text link
    We study the observational signature of flux emergence in the photosphere using synthetic data from a 3D MHD simulation of the emergence of a twisted flux tube. Several stages in the emergence process are considered. At every stage we compute synthetic Stokes spectra of the two iron lines Fe I 6301.5 {\AA} and Fe I 6302.5 {\AA} and degrade the data to the spatial and spectral resolution of Hinode's SOT/SP. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve various atmospheric parameters and compare the results with recent Hinode observations. During the emergence sequence, the spectral lines sample different parts of the rising flux tube, revealing its twisted structure. The horizontal component of the magnetic field retrieved from the simulations is close to the observed values. The flattening of the flux tube in the photosphere is caused by radiative cooling, which slows down the ascent of the tube to the upper solar atmosphere. Consistent with the observations, the rising magnetized plasma produces a blue shift of the spectral lines during a large part of the emergence sequence.Comment: A&A Letter, 3 figure

    Decay of a simulated mixed-polarity magnetic field in the solar surface layers

    Full text link
    Magnetic flux is continuously being removed and replenished on the solar surface. To understand the removal process we carried out 3D radiative MHD simulations of the evolution of patches of photospheric magnetic field with equal amounts of positive and negative flux. We find that the flux is removed at a rate corresponding to an effective turbulent diffusivity, of 100--340 km^2/s, depending on the boundary conditions. For average unsigned flux densities above about 70 Gauss, the percentage of surface magnetic energy coming from different field strengths is almost invariant. The overall process is then one where magnetic elements are advected by the horizontal granular motions and occasionally come into contact with opposite-polarity elements. These reconnect above the photosphere on a comparatively short time scale after which the U loops produced rapidly escape through the upper surface while the downward retraction of inverse-U loops is significantly slower, because of the higher inertia and lower plasma beta in the deeper layers.Comment: 8 pages, 10 figures accepted in A&

    Magneto-acoustic waves in a gravitationally stratified magnetized plasma: eigen-solutions and their applications to the solar atmosphere

    Get PDF
    Magneto-acoustic gravity (MAG) waves have been studied intensively in the context of astrophysical plasmas. There are three popular choices of analytic modeling using a Cartesian coordinate system: a magnetic field parallel, perpendicular, or at an angle to the gravitational field. Here, we study a gravitationally stratified plasma embedded in a parallel, so called vertical, magnetic field. We find a governing equation for the auxiliary quantity Θ = p 1/ρ 0, and find solutions in terms of hypergeometric functions. With the convenient relationship between Θ and the vertical velocity component, v z , we derive the solution for v z . We show that the four linearly independent functions for v z can also be cast as single hypergeometric functions, rather than the Frobenius series derived by Leroy & Schwartz. We are then able to analyze a case of approximation for a one-layer solution, taking the small wavelength limit. Motivated by solar atmospheric applications, we finally commence study of the eigenmodes of perturbations for a two-layer model using our solutions, solving the dispersion relation numerically. We show that, for a transition between a photospheric and chromospheric plasma embedded in a vertical magnetic field, modes exist that are between the observationally widely investigated three and five minute oscillation periods, interpreted as solar global oscillations in the lower solar atmosphere. It is also shown that, when the density contrast between the layers is large (e.g., applied to photosphere/chromosphere-corona), the global eigenmodes are practically a superposition of the same as in each of the separate one-layer systems

    Power spectrum of turbulent convection in the solar photosphere

    Full text link
    The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two sunrise missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with an index of 2~\approx -2. The unsmeared simulations exhibit a power-law index of 2.25~\approx -2.25. The smearing considerably reduces the extent of the power-law-like portion of the spectra. Therefore, the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. The simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index from the solar surface to 300300~km above it. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below 180180 km. Above this height, the gravity work progressively gains importance at all scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law.Comment: 10 pages, 7 figures, Accepted in A and

    Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11069-017-2918-zThe potential impacts of tsunamis along the Catalan Coast (NW Mediterranean) are analysed using numerical modelling. The region is characterized by moderate to low seismic activity and by moderate- to low-magnitude earthquakes. However, the occurrence of historical strong earthquakes and the location of several active offshore faults in front of the coast suggest that the possibility of an earthquake-triggered tsunami is not negligible although of low probability. Up to five faults have been identified to generate tsunamis, being the highest associated possible seismic magnitudes of up to 7.6. Coastal flooding and port agitation are characterized using the Worst-case Credible Tsunami Scenario Analysis approach. The results show a multiple fault source contribution to tsunami hazard. The shelf dimensions and the existence of submerged canyons control the tsunami propagation. In wide shelves, waves travelling offshore may become trapped by refraction causing the wave energy to reach the coastline at some distance from the origin. The free surface water elevation increases at the head of the canyons due to the sharp depth gradients. The effects of potential tsunamis would be very harmful in low-lying coastal stretches, such as deltas, with a high population concentration, assets and infrastructures. The Ebro delta appears to be the most exposed coast, and about the 20% of the delta surface is prone to flooding due to its extremely low-lying nature. The activity at Barcelona port will be severely affected by inflow backflow current at the entrance of up to 2 m/s.Peer ReviewedPostprint (author's final draft
    corecore