415 research outputs found

    Proof of Bose-Einstein Condensation for Dilute Trapped Gases

    Full text link
    The ground state of bosonic atoms in a trap has been shown experimentally to display Bose-Einstein condensation (BEC). We prove this fact theoretically for bosons with two-body repulsive interaction potentials in the dilute limit, starting from the basic Schroedinger equation; the condensation is 100% into the state that minimizes the Gross-Pitaevskii energy functional. This is the first rigorous proof of BEC in a physically realistic, continuum model.Comment: Revised version with some simplifications and clarifications. To appear in Phys. Rev. Let

    Theory of superfluidity and drag force in the one-dimensional Bose gas

    Full text link
    The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and quantitative predictions for the drag force experienced by moving obstacles have become available. This topical review discusses the drag force obtained from linear response theory in relation to Landau's criterion of superfluidity. Based upon improved analytical and numerical understanding of the dynamical structure factor, results for different obstacle potentials are obtained, including single impurities, optical lattices and random potentials generated from speckle patterns. The dynamical breakdown of superfluidity in random potentials is discussed in relation to Anderson localization and the predicted superfluid-insulator transition in these systems.Comment: 17 pages, 12 figures, mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon

    Prioritising systemic cancer therapies applying ESMO's tools and other resources to assist in improving cancer care globally:the Kazakh experience

    Get PDF
    BACKGROUND: In Kazakhstan, cancer is the second leading cause of death with a major public health and economic burden. In the last decade, cancer care and cancer medicine costs have significantly increased. To improve the efficiency and efficacy of cancer care expenditure and planning, the Kazakhstan Ministry of Health requested assistance from the World Health Organization (WHO) and the European Society for Medical Oncology (ESMO) to review its systemic cancer treatment protocols and essential medicines list and identify high-impact, effective regimens. MATERIALS AND METHODS: ESMO developed a four-phase approach to review Kazakhstan cancer treatment protocols: (i) perform a systematic analysis of the country’s cancer medicines and treatment protocols; (ii) cross-reference the country’s cancer protocols with the WHO Model List of Essential Medicines, the ESMO-Magnitude of Clinical Benefit Scale and the European Medicines Agency’s medicine availability and indications database; (iii) extract treatment recommendations from the ESMO Clinical Practice Guidelines; (iv) expert review for all cancer medicines not on the WHO Model List of Essential Medicines and the country treatment protocols. RESULTS: This ESMO four-phase approach led to the update of the Kazakhstan national essential cancer medicines list and the list of cancer treatment protocols. This review has led to the withdrawal of several low-value or non-evidence-based medicines and a budget increase for cancer care to include all essential and highly effective medicines and treatment options. CONCLUSION: When applied effectively, this four-phase approach can improve access to medicines, efficiency of expenditure and sustainability of cancer systems. The WHO–ESMO collaboration illustrated how, by sharing best practices, tools and resources, we can address access to cancer medicines and positively impact patient care

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    Using Glycosylated Hemoglobin to Define the Metabolic Syndrome in United States Adults

    Get PDF
    OBJECTIVE- To compare the use of GHb and fasting plasma glucose (FPG) to define the metabolic syndrome (MetS). RESEARCH DESIGN AND METHODS- Data from the U.S. National Health and Nutrition Examination Survey 1999-2006 were used. MetS was defined using the consensus criteria in 2009. Raised blood glucose was defined as either FPG ≥100 mg/dl (5.6 mmol/l) or GHb ≥5.7%. RESULTS- In 2003-2006, there was 91.3% agreement between GHb and FPG when either was used to define MetS. The agreement was good irrespective of age, sex, race/ethnicity, BMI, and diabetes status (≥87.4%). Similar results were found in 1999-2002. Among subjects without diabetes, only the use of GHb alone, but not FPG, resulted in significant association with cardiovascular diseases (odds ratio 1.45, P = 0.005). CONCLUSIONS- Using GHb instead of FPG to define MetS is feasible. It also identifies individuals with increased cardiovascular risk. © 2010 by the American Diabetes Association.published_or_final_versionThe 5th International Symposium on Healthy Aging: Is Aging a Disease?, Hong Kong, 6-7 March, 2010. In Diabetes Care, 2010, v. 33 n. 8, p. 1856-185

    Quantum flutter of supersonic particles in one-dimensional quantum liquids

    Full text link
    The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the most puzzling phenomena and challenging problems in condensed matter physics. Here we report on essentially exact results on the time evolution of an impurity injected at a finite velocity into a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the correlation hole around a particle in a strongly coupled many-body quantum system, and find that the resulting correlated state does not come to a complete stop but reaches a steady state which propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an intuitive physical picture of these intriguing discoveries, and propose an experimental setup where this physics can be realized and probed directly.Comment: 13 pages, 9 figure

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant.

    Get PDF
    Lumbar disc degeneration (LDD) is associated with both genetic and environmental factors and affects many people worldwide. A hallmark of LDD is loss of proteoglycan and water content in the nucleus pulposus of intervertebral discs. While some genetic determinants have been reported, the etiology of LDD is largely unknown. Here we report the findings from linkage and association studies on a total of 32,642 subjects consisting of 4,043 LDD cases and 28,599 control subjects. We identified carbohydrate sulfotransferase 3 (CHST3), an enzyme that catalyzes proteoglycan sulfation, as a susceptibility gene for LDD. The strongest genome-wide linkage peak encompassed CHST3 from a Southern Chinese family-based data set, while a genome-wide association was observed at rs4148941 in the gene in a meta-analysis using multiethnic population cohorts. rs4148941 lies within a potential microRNA-513a-5p (miR-513a-5p) binding site. Interaction between miR-513a-5p and mRNA transcribed from the susceptibility allele (A allele) of rs4148941 was enhanced in vitro compared with transcripts from other alleles. Additionally, expression of CHST3 mRNA was significantly reduced in the intervertebral disc cells of human subjects carrying the A allele of rs4148941. Together, our data provide new insights into the etiology of LDD, implicating an interplay between genetic risk factors and miRNA.published_or_final_versio
    corecore