The non-equilibrium dynamics of strongly correlated many-body systems
exhibits some of the most puzzling phenomena and challenging problems in
condensed matter physics. Here we report on essentially exact results on the
time evolution of an impurity injected at a finite velocity into a
one-dimensional quantum liquid. We provide the first quantitative study of the
formation of the correlation hole around a particle in a strongly coupled
many-body quantum system, and find that the resulting correlated state does not
come to a complete stop but reaches a steady state which propagates at a finite
velocity. We also uncover a novel physical phenomenon when the impurity is
injected at supersonic velocities: the correlation hole undergoes long-lived
coherent oscillations around the impurity, an effect we call quantum flutter.
We provide a detailed understanding and an intuitive physical picture of these
intriguing discoveries, and propose an experimental setup where this physics
can be realized and probed directly.Comment: 13 pages, 9 figure