917 research outputs found

    La querelle entre Calvin et les libertins

    Get PDF

    Hydroxyl as a Tracer of H2 in the Envelope of MBM40

    Full text link
    We observed 51 positions in the OH 1667 MHz main line transitions in the translucent, high latitude cloud MBM40. We detected OH emission in 8 out of 8 positions in the molecular core of the cloud and 24 out of 43 in the surrounding, lower extinction envelope and periphery of the cloud. Using a linear relationship between the integrated OH line intensity and E(B-V), we estimate the mass in the core, the envelope, and the periphery of the cloud to be 4, 8, and 5 solar masses. As much as a third of the total cloud mass may be found in the in the periphery (E(B-V) << 0.12 mag) and about a half in the envelope (0.12 ≀\le E(B-V) ≀\le 0.17 mag). If these results are applicable to other translucent clouds the OH 1667 MHz line is an excellent tracer of gas in very low extinction regions and high-sensitivity mapping of the envelopes of molecular clouds may reveal the presence of significant quantities of molecular mass.Comment: 26 pages, 3 figures, and 5 table

    The Mass-Size Relation from Clouds to Cores. II. Solar Neighborhood Clouds

    Get PDF
    We measure the mass and size of cloud fragments in several molecular clouds continuously over a wide range of spatial scales (0.05 < r / pc < 3). Based on the recently developed "dendrogram-technique", this characterizes dense cores as well as the enveloping clouds. "Larson's 3rd Law" of constant column density, m(r) = C*r^2, is not well suited to describe the derived mass-size data. Solar neighborhood clouds not forming massive stars (< 10 M_sun; Pipe Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) < 870 M_sun (r / pc)^1.33 . In contrast to this, clouds forming massive stars (Orion A, G10.15−-0.34, G11.11−-0.12) do exceed the aforementioned relation. Thus, this limiting mass-size relation may approximate a threshold for the formation of massive stars. Across all clouds, cluster-forming cloud fragments are found to be---at given radius---more massive than fragments devoid of clusters. The cluster-bearing fragments are found to roughly obey a mass-size law m = C*r^1.27 (where the exponent is highly uncertain in any given cloud, but is certainly smaller than 1.5).Comment: accepted to the Astrophysical Journa

    CH 3 GHz Observations of Molecular Clouds Along the Galactic Plane

    Full text link
    Spectra in the CH 2Π1/2^2\Pi_{1/2}, J=1/2, F=1-1 transition at 3335 MHz were obtained in three 5-point crosses centered on the Galactic plane at ℓ=\ell = 50\arcdeg, 100\arcdeg, and 110\arcdeg. The lines of sight traverse both Giant Molecular Clouds (GMCs) and local, smaller entities. This transition is a good tracer of low-density molecular gas and the line profiles are very similar to CO(1-0) data at nearly the same resolution. In addition, the CH 3335 MHz line can be used to calibrate the CO-H2_2 conversion factor (XCO_{\rm CO}) in low-density molecular gas. Although this technique underestimates XCO_{\rm CO} in GMCs, our results are within a factor of two of XCO_{\rm CO} values calibrated for GMCs by other techniques. The similarity of CH and CO line profiles, and that of XCO_{\rm CO} values derived from CH and more traditional techniques, implies that most of the molecular gas along the observed lines of sight is at relatively low densities (n≀n \le 103^3 cm−3^{-3}).Comment: 26 pages, 12 figures, submitted to the AJ, revised after referee repor

    CH 3 GHz Observations of the Galactic Center

    Full text link
    A 3 ×\times 3 map of the Galactic Center was made at 9\arcmin resolution and 10\arcmin spacing in the CH 2Π1/2^2\Pi_{1/2}, J=1/2, F=1-1 transition at 3335 MHz. The CH emission shows a velocity extent that is nearly that of the CO(1-0) line, but the CH line profiles differ markedly from the CO. The 3335 MHz CH transition primarily traces low-density molecular gas and our observations indicate that the mass of this component within ∌\sim 30 pc of the Galactic Center is ∌\sim 9 ×\times 106^6 M⊙_\odot. The CO-H2_2 conversion factor obtained for the low-density gas in the mapped region is greater than that thought to apply to the dense molecular gas at the Galactic Center. In addition to tracing the low-density molecular gas at the Galactic Center, the CH spectra show evidence of emission from molecular clouds along the line of sight both in the foreground and background. The scale height of these clouds ranges from 27 - 109 pc, consistent with previous work based on observations of molecular clouds in the inner Galaxy.Comment: 29 pages, 12 figure

    Multi--Pressure Polytropes as Models for the Structure and Stability of Molecular Clouds. I. Theory

    Full text link
    Molecular clouds are supported by thermal pressure, magnetic pressure, and turbulent pressure. Each of these can be modeled with a polytropic equation of state, so that overall the total pressure is the sum of the individual components. We model the turbulent pressure as being due to a superposition of Alfven waves. The theory of polytropes is generalized to allow for the flow of entropy in response to a perturbation, as expected for the entropy associated with wave pressure. The equation of state of molecular clouds is "soft", so that the properties of the clouds are generally governed by the conditions at the surface. In general, the polytropes are not isentropic, and this permits large density and pressure drops to occur between the center and the edge of the polytropes, as is observed.Comment: Submitted to ApJ with 10 figure

    CN and HCN in Dense Interstellar Clouds

    Full text link
    We present a theoretical investigation of CN and HCN molecule formation in dense interstellar clouds. We study the gas-phase CN and HCN production efficiencies from the outer photon-dominated regions (PDRs) into the opaque cosmic-ray dominated cores. We calculate the equilibrium densities of CN and HCN, and of the associated species C+, C, and CO, as functions of the far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17 s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure

    Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer

    Get PDF
    The definition and optimisation studies for the Gaia satellite spectrograph, the Radial Velocity Spectrometer (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 by 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5 years of the Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100-150 million stars up to magnitude V~17-18. At the end of the mission, the RVS will provide radial velocities with precisions of ~2 km/s at V=15 and \~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric parameters up to V~14-15. The individual abundances of elements such as Silicon and Magnesium, vital for the understanding of Galactic evolution, will be obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse Interstellar Band (DIB) in the RVS wavelength range will make it possible to derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5, 6 in degraded resolution; available in full resolution at http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200
    • 

    corecore