917 research outputs found
Hydroxyl as a Tracer of H2 in the Envelope of MBM40
We observed 51 positions in the OH 1667 MHz main line transitions in the
translucent, high latitude cloud MBM40. We detected OH emission in 8 out of 8
positions in the molecular core of the cloud and 24 out of 43 in the
surrounding, lower extinction envelope and periphery of the cloud. Using a
linear relationship between the integrated OH line intensity and E(B-V), we
estimate the mass in the core, the envelope, and the periphery of the cloud to
be 4, 8, and 5 solar masses. As much as a third of the total cloud mass may be
found in the in the periphery (E(B-V) 0.12 mag) and about a half in the
envelope (0.12 E(B-V) 0.17 mag). If these results are applicable to
other translucent clouds the OH 1667 MHz line is an excellent tracer of gas in
very low extinction regions and high-sensitivity mapping of the envelopes of
molecular clouds may reveal the presence of significant quantities of molecular
mass.Comment: 26 pages, 3 figures, and 5 table
The Mass-Size Relation from Clouds to Cores. II. Solar Neighborhood Clouds
We measure the mass and size of cloud fragments in several molecular clouds
continuously over a wide range of spatial scales (0.05 < r / pc < 3). Based on
the recently developed "dendrogram-technique", this characterizes dense cores
as well as the enveloping clouds. "Larson's 3rd Law" of constant column
density, m(r) = C*r^2, is not well suited to describe the derived mass-size
data. Solar neighborhood clouds not forming massive stars (< 10 M_sun; Pipe
Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) < 870 M_sun (r / pc)^1.33 .
In contrast to this, clouds forming massive stars (Orion A, G10.150.34,
G11.110.12) do exceed the aforementioned relation. Thus, this limiting
mass-size relation may approximate a threshold for the formation of massive
stars. Across all clouds, cluster-forming cloud fragments are found to be---at
given radius---more massive than fragments devoid of clusters. The
cluster-bearing fragments are found to roughly obey a mass-size law m =
C*r^1.27 (where the exponent is highly uncertain in any given cloud, but is
certainly smaller than 1.5).Comment: accepted to the Astrophysical Journa
CH 3 GHz Observations of Molecular Clouds Along the Galactic Plane
Spectra in the CH , J=1/2, F=1-1 transition at 3335 MHz were
obtained in three 5-point crosses centered on the Galactic plane at
50\arcdeg, 100\arcdeg, and 110\arcdeg. The lines of sight traverse both
Giant Molecular Clouds (GMCs) and local, smaller entities. This transition is a
good tracer of low-density molecular gas and the line profiles are very similar
to CO(1-0) data at nearly the same resolution. In addition, the CH 3335 MHz
line can be used to calibrate the CO-H conversion factor (X) in
low-density molecular gas. Although this technique underestimates X
in GMCs, our results are within a factor of two of X values
calibrated for GMCs by other techniques. The similarity of CH and CO line
profiles, and that of X values derived from CH and more traditional
techniques, implies that most of the molecular gas along the observed lines of
sight is at relatively low densities ( 10 cm).Comment: 26 pages, 12 figures, submitted to the AJ, revised after referee
repor
CH 3 GHz Observations of the Galactic Center
A 3 3 map of the Galactic Center was made at 9\arcmin resolution
and 10\arcmin spacing in the CH , J=1/2, F=1-1 transition at
3335 MHz. The CH emission shows a velocity extent that is nearly that of the
CO(1-0) line, but the CH line profiles differ markedly from the CO. The 3335
MHz CH transition primarily traces low-density molecular gas and our
observations indicate that the mass of this component within 30 pc of
the Galactic Center is 9 10 M. The CO-H
conversion factor obtained for the low-density gas in the mapped region is
greater than that thought to apply to the dense molecular gas at the Galactic
Center. In addition to tracing the low-density molecular gas at the Galactic
Center, the CH spectra show evidence of emission from molecular clouds along
the line of sight both in the foreground and background. The scale height of
these clouds ranges from 27 - 109 pc, consistent with previous work based on
observations of molecular clouds in the inner Galaxy.Comment: 29 pages, 12 figure
Multi--Pressure Polytropes as Models for the Structure and Stability of Molecular Clouds. I. Theory
Molecular clouds are supported by thermal pressure, magnetic pressure, and
turbulent pressure. Each of these can be modeled with a polytropic equation of
state, so that overall the total pressure is the sum of the individual
components. We model the turbulent pressure as being due to a superposition of
Alfven waves. The theory of polytropes is generalized to allow for the flow of
entropy in response to a perturbation, as expected for the entropy associated
with wave pressure. The equation of state of molecular clouds is "soft", so
that the properties of the clouds are generally governed by the conditions at
the surface. In general, the polytropes are not isentropic, and this permits
large density and pressure drops to occur between the center and the edge of
the polytropes, as is observed.Comment: Submitted to ApJ with 10 figure
CN and HCN in Dense Interstellar Clouds
We present a theoretical investigation of CN and HCN molecule formation in
dense interstellar clouds. We study the gas-phase CN and HCN production
efficiencies from the outer photon-dominated regions (PDRs) into the opaque
cosmic-ray dominated cores. We calculate the equilibrium densities of CN and
HCN, and of the associated species C+, C, and CO, as functions of the
far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with
hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are
exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar
FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17
s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of
the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure
Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer
The definition and optimisation studies for the Gaia satellite spectrograph,
the Radial Velocity Spectrometer (RVS), converged in late 2002 with the
adoption of the instrument baseline. This paper reviews the characteristics of
the selected configuration and presents its expected performance. The RVS is a
2.0 by 1.6 degree integral field spectrograph, dispersing the light of all
sources entering its field of view with a resolving power R=11 500 over the
wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan
the sky during the 5 years of the Gaia mission. On average, each source will be
observed 102 times over this period. The RVS will collect the spectra of about
100-150 million stars up to magnitude V~17-18. At the end of the mission, the
RVS will provide radial velocities with precisions of ~2 km/s at V=15 and
\~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also
provide rotational velocities, with precisions (at the end of the mission) for
late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric
parameters up to V~14-15. The individual abundances of elements such as Silicon
and Magnesium, vital for the understanding of Galactic evolution, will be
obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse
Interstellar Band (DIB) in the RVS wavelength range will make it possible to
derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5,
6 in degraded resolution; available in full resolution at
http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd
Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas
The evolution of quasi-isentropic magnetohydrodynamic waves of small but
finite amplitude in an optically thin plasma is analyzed. The plasma is assumed
to be initially homogeneous, in thermal equilibrium and with a straight and
homogeneous magnetic field frozen in. Depending on the particular form of the
heating/cooling function, the plasma may act as a dissipative or active medium
for magnetoacoustic waves, while Alfven waves are not directly affected. An
evolutionary equation for fast and slow magnetoacoustic waves in the single
wave limit, has been derived and solved, allowing us to analyse the wave
modification by competition of weakly nonlinear and quasi-isentropic effects.
It was shown that the sign of the quasi-isentropic term determines the scenario
of the evolution, either dissipative or active. In the dissipative case, when
the plasma is first order isentropically stable the magnetoacoustic waves are
damped and the time for shock wave formation is delayed. However, in the active
case when the plasma is isentropically overstable, the wave amplitude grows,
the strength of the shock increases and the breaking time decreases. The
magnitude of the above effects depends upon the angle between the wave vector
and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar
abundances either in the interstellar medium or in the solar atmosphere, as
well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature
where the plasma is isentropically unstable and the corresponding time and
length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200
- âŠ