198 research outputs found

    Charged State of a Spherical Plasma in Vacuum

    Full text link
    The stationary state of a spherically symmetric plasma configuration is investigated in the limit of immobile ions and weak collisions. Configurations with small radii are positively charged as a significant fraction of the electron population evaporates during the equilibration process, leaving behind an electron distribution function with an energy cutoff. Such charged plasma configurations are of interest for the study of Coulomb explosions and ion acceleration from small clusters irradiated by ultraintense laser pulses and for the investigation of ion bunches propagation in a plasma

    Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices

    Full text link
    We report an experimental study of miniband magnetoconduction in semiconducting InAs/GaSb superlattices. For samples with miniband widths below the longitudinal optical phonon energy we identify a new superlattice magnetophonon resonance (SLMPR) caused by resonant scattering of electrons across the mini-Brillouin zone. This new resonant feature arises directly from the drift velocity characteristics of the superlattice dispersion and total magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    M31N 2008-12a - the remarkable recurrent nova in M31: Pan-chromatic observations of the 2015 eruption

    Get PDF
    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of Prec=351±13P_\mathrm{rec}=351\pm13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground and space-based follow-up programs. In this paper we present the 2015 detection; visible to near-infrared photometry and visible spectroscopy; and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2m (Hawaii) discovered the 2015 eruption, estimated to have commenced at Aug. 28.28±0.1228.28\pm0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities 13000\sim13000 km s1^{-1}, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early super-soft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is Prec=174±10P_\mathrm{rec}=174\pm10 d, and we expect the next eruption of M31N 2008-12a to occur around mid-Sep. 2016

    Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data

    Get PDF
    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a

    Nuclear astrophysics: the unfinished quest for the origin of the elements

    Get PDF
    Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.Comment: Invited Review. Accepted for publication in "Reports on Progress in Physics" (version with low-resolution figures

    Effects of Vegetation, Corridor Width and Regional Land Use on Early Successional Birds on Powerline Corridors

    Get PDF
    Powerline rights-of-way (ROWs) often provide habitat for early successional bird species that have suffered long-term population declines in eastern North America. To determine how the abundance of shrubland birds varies with habitat within ROW corridors and with land use patterns surrounding corridors, we ran Poisson regression models on data from 93 plots on ROWs and compared regression coefficients. We also determined nest success rates on a 1-km stretch of ROW. Seven species of shrubland birds were common in powerline corridors. However, the nest success rates for prairie warbler (Dendroica discolor) and field sparrow (Spizella pusilla) were <21%, which is too low to compensate for estimated annual mortality. Some shrubland bird species were more abundant on narrower ROWs or at sites with lower vegetation or particular types of vegetation, indicating that vegetation management could be refined to favor species of high conservation priority. Also, several species were more abundant in ROWs traversing unfragmented forest than those near residential areas or farmland, indicating that corridors in heavily forested regions may provide better habitat for these species. In the area where we monitored nests, brood parasitism by brown-headed cowbirds (Molothrus ater) occurred more frequently close to a residential area. Although ROWs support dense populations of shrubland birds, those in more heavily developed landscapes may constitute sink habitat. ROWs in extensive forests may contribute more to sustaining populations of early successional birds, and thus may be the best targets for habitat management

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
    corecore