18 research outputs found

    May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension

    Get PDF
    Aims Raised blood pressure (BP) is the biggest contributor to mortality and disease burden worldwide and fewer than half of those with hypertension are aware of it. May Measurement Month (MMM) is a global campaign set up in 2017, to raise awareness of high BP and as a pragmatic solution to a lack of formal screening worldwide. The 2018 campaign was expanded, aiming to include more participants and countries. Methods and results Eighty-nine countries participated in MMM 2018. Volunteers (≥18 years) were recruited through opportunistic sampling at a variety of screening sites. Each participant had three BP measurements and completed a questionnaire on demographic, lifestyle, and environmental factors. Hypertension was defined as a systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, or taking antihypertensive medication. In total, 74.9% of screenees provided three BP readings. Multiple imputation using chained equations was used to impute missing readings. 1 504 963 individuals (mean age 45.3 years; 52.4% female) were screened. After multiple imputation, 502 079 (33.4%) individuals had hypertension, of whom 59.5% were aware of their diagnosis and 55.3% were taking antihypertensive medication. Of those on medication, 60.0% were controlled and of all hypertensives, 33.2% were controlled. We detected 224 285 individuals with untreated hypertension and 111 214 individuals with inadequately treated (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) hypertension. Conclusion May Measurement Month expanded significantly compared with 2017, including more participants in more countries. The campaign identified over 335 000 adults with untreated or inadequately treated hypertension. In the absence of systematic screening programmes, MMM was effective at raising awareness at least among these individuals at risk

    Pengaruh Pendekatan Saintifik terhadap Kemampuan Pemahaman Matematis Siswa Kelas VIII SMP Negeri 10

    Full text link
    Penelitian ini merupakan penelitian eksperimen semu dengan rancangan posttest only control group design. Populasi dalam penelitian ini adalah seluruh siswa kelas VIII SMP Negeri 10 Kendari yang terdiri dari 7 kelas paralel berjumlah 210 siswa. Penentuan sampel dilakukan dengan teknik purposive sampling. Data diperoleh menggunakan instrumen berupa tes kemampuan pemahaman matematis siswa. Teknik analisis data menggunakan statistik deskriptif dan statistik inferensial. Hasil penelitian secara deskriptif dan secara inferensial menunjukkan bahwa: (1) Rata-rata kemampuan pemahaman matematis siswa yang diajar dengan pendekatan saintifik dengan cara berkelompok pada materi relasi dan fungsi adalah 76.38, (2) Rata-rata kemampuan pemahaman matematis siswa yang diajar dengan pendekatan saintifik dengan cara tidak berkelompok pada materi relasi dan fungsi adalah 69.00, dan (3) Peningkatan kemampuan pemahaman matematis siswa yang diajar dengan pendekatan saintifik dengan cara berkelompok lebih tinggi secara signifikan daripada peningkatan kemampuan pemahaman matematis siswa yang diajar dengan pendekatan saintifik tidak berkelompok

    Methodologic problems encountered in the assay of proteinases in Lewis lung carcinoma, a mouse metastasizing tumor.

    No full text
    The proteolytic activity in homogenates and extracts of subcellular fractions prepared from subcutaneous Lewis lung carcinoma was determined using proteins and synthetic peptides as substrates. The presence of cathepsin D, plasminogen activator, cathepsin B-, cathepsin G- and elastase-like enzymes was observed. No difference was revealed between the proteolytic activity in homogenates of Lewis lung carcinoma, at the growth stage examined, and in homogenates of normal lung. High specific activities were found in the lysosomal extract, whereas decreasing activities were found in the nuclear extract, the homogenate and the postlysosomal mitochondrial supernatant; no active or trypsin-activatable collagenase activity was detected. The presence in the tumor tissue of these enzymatic activities is in agreement with their proposed role in the process of metastasis. The lack of differences between homogenates of tumor and normal lung tissue suggests that the use of whole cells is required to selectively study tumor proteinases specifically involved in tumor malignancy

    Review: Bioengineering strategies to probe T cell mechanobiology

    No full text
    T cells play a major role in adaptive immune response, and T cell dysfunction can lead to the progression of several diseases that are often associated with changes in the mechanical properties of tissues. However, the concept that mechanical forces play a vital role in T cell activation and signaling is relatively new. The endogenous T cell microenvironment is highly complex and dynamic, involving multiple, simultaneous cell-cell and cell-matrix interactions. This native complexity has made it a challenge to isolate the effects of mechanical stimuli on T cell activation. In response, researchers have begun developing engineered platforms that recapitulate key aspects of the native microenvironment to dissect these complex interactions in order to gain a better understanding of T cell mechanotransduction. In this review, we first describe some of the unique characteristics of T cells and the mounting research that has shown they are mechanosensitive. We then detail the specific bioengineering strategies that have been used to date to measure and perturb the mechanical forces at play during T cell activation. In addition, we look at engineering strategies that have been used successfully in mechanotransduction studies for other cell types and describe adaptations that may make them suitable for use with T cells. These engineering strategies can be classified as 2D, so-called 2.5D, or 3D culture systems. In the future, findings from this emerging field will lead to an optimization of culture environments for T cell expansion and the development of new T cell immunotherapies for cancer and other immune diseases

    Next-generation cancer organoids

    No full text
    Organotypic models of patient-specific tumours are revolutionizing our understanding of cancer heterogeneity and its implications for personalized medicine. These advancements are, in part, attributed to the ability of organoid models to stably preserve genetic, proteomic, morphological and pharmacotypic features of the parent tumour in vitro, while also offering unprecedented genomic and environmental manipulation. Despite recent innovations in organoid protocols, current techniques for cancer organoid culture are inherently uncontrolled and irreproducible, owing to several non-standardized facets including cancer tissue sources and subsequent processing, medium formulations, and animal-derived three-dimensional matrices. Given the potential for cancer organoids to accurately recapitulate the intra- and intertumoral biological heterogeneity associated with patient-specific cancers, eliminating the undesirable technical variability accompanying cancer organoid culture is necessary to establish reproducible platforms that accelerate translatable insights into patient care. Here we describe the current challenges and recent multidisciplinary advancements and opportunities for standardizing next-generation cancer organoid systems.This Review summarizes limitations in the current techniques used for patient-derived cancer organoid culture and highlights recent advancements and future opportunities for their standardization

    A Library of Elastin-like Proteins with Tunable Matrix Ligands for <i>In Vitro</i> 3D Neural Cell Culture

    No full text
    Hydrogels with encapsulated cells have widespread biomedical applications, both as tissue-mimetic 3D cultures in vitro and as tissue-engineered therapies in vivo. Within these hydrogels, the presentation of cell-instructive extracellular matrix (ECM)-derived ligands and matrix stiffness are critical factors known to influence numerous cell behaviors. While individual ECM biopolymers can be blended together to alter the presentation of cell-instructive ligands, this typically results in hydrogels with a range of mechanical properties. Synthetic systems that allow for the facile incorporation and modulation of multiple ligands without modification of matrix mechanics are highly desirable. In the present work, we leverage protein engineering to design a family of xeno-free hydrogels (i.e., devoid of animal-derived components) consisting of recombinant hyaluronan and recombinant elastin-like proteins (ELPs), cross-linked together with dynamic covalent bonds. The ELP components incorporate cell-instructive peptide ligands derived from ECM proteins, including fibronectin (RGD), laminin (IKVAV and YIGSR), collagen (DGEA), and tenascin-C (PLAEIDGIELTY and VFDNFVL). By carefully designing the protein primary sequence, we form 3D hydrogels with defined and tunable concentrations of cell-instructive ligands that have similar matrix mechanics. Utilizing this system, we demonstrate that neurite outgrowth from encapsulated embryonic dorsal root ganglion (DRG) cultures is significantly modified by cell-instructive ligand content. Thus, this library of protein-engineered hydrogels is a cell-compatible system to systematically study cell responses to matrix-derived ligands
    corecore