123 research outputs found

    Quantum simulation of the single-particle Schrodinger equation

    Full text link
    The working of a quantum computer is described in the concrete example of a quantum simulator of the single-particle Schrodinger equation. We show that a register of 6-10 qubits is sufficient to realize a useful quantum simulator capable of solving in an efficient way standard quantum mechanical problems.Comment: 7 pages, 6 figures, added remarks and reference

    Optimal purification of a generic n-qudit state

    Get PDF
    We propose a quantum algorithm for the purification of a generic mixed state ρ\rho of a nn-qudit system by using an ancillary nn-qudit system. The algorithm is optimal in that (i) the number of ancillary qudits cannot be reduced, (ii) the number of parameters which determine the purification state Ψ>|\Psi> exactly equals the number of degrees of freedom of ρ\rho, and (iii) Ψ>|\Psi> is easily determined from the density matrix ρ\rho. Moreover, we introduce a quantum circuit in which the quantum gates are unitary transformations acting on a 2n2n-qudit system. These transformations are determined by parameters that can be tuned to generate, once the ancillary qudits are disregarded, any given mixed nn-qudit state.Comment: 8 pages, 9 figures, remarks adde

    Photocatalytic bacterial inactivation by TiO2-coated surfaces

    Get PDF
    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO(2))-coated surfaces. Bacterial inactivation was evaluated using TiO(2)-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO(2)-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO(2)-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry

    A simple representation of quantum process tomography

    Get PDF
    We show that the Fano representation leads to a particularly simple and appealing form of the quantum process tomography matrix χF\chi_{_F}, in that the matrix χF\chi_{_F} is real, the number of matrix elements is exactly equal to the number of free parameters required for the complete characterization of a quantum operation, and these matrix elements are directly related to evolution of the expectation values of the system's polarization measurements. These facts are illustrated in the examples of one- and two-qubit quantum noise channels.Comment: 5 page

    Axial Imidazole Distorsion Effects on the Catalytic and Binding Properties of Chelated Deuterohemin Complexes

    Get PDF
    The effect of strain in the axial coordination of imidazole to the heme has been studied in the chelate complexes deuterohemin-histidine (DH-His) and deuterohemin-alanylhistidine (DH-AlaHis). Molecular mechanics calculations indicate that three types of distortion of the axial ligand occur in DH-His, due to the relatively short length of the arm carrying the donor group: tilting off-axis, tipping, and inclination of the imidazole plane with respect to the axial Fe-N bond. The effects of tilting (¢ç 10°) and inclination of the imidazole ring (¢ä 17°) are dominant, while tipping is small and is probably of little importance here. By contrast, the axial imidazole coordination is normal in DH-AlaHis and other computed deuterohemin-dipeptide or -tripeptide complexes where histidine is the terminal residue, the only exception being DH-ProHis, where the rigidity of the proline ring reduces the flexibility of the chelating arm. The distortion in the axial iron-imidazole bond in DH-His has profound and negative influence on the binding and catalytic properties of this complex compared to DH-AlaHis. The former complex binds more weakly carbon monoxide, in its reduced form, and imidazole, in its oxidized form, than the latter. The catalytic efficiency in peroxidative oxidations is also reduced in DH-His with respect to DH-AlaHis. The activity of the latter complex is similar to that of microperoxidase-11, the peptide fragment incorporating the heme that results from hydrolytic cleavage of cytochrome

    On the possible sources of gravitational wave bursts detectable today

    Full text link
    We discuss the possibility that galactic gravitational wave sources might give burst signals at a rate of several events per year, detectable by state-of-the-art detectors. We are stimulated by the results of the data collected by the EXPLORER and NAUTILUS bar detectors in the 2001 run, which suggest an excess of coincidences between the two detectors, when the resonant bars are orthogonal to the galactic plane. Signals due to the coalescence of galactic compact binaries fulfill the energy requirements but are problematic for lack of known candidates with the necessary merging rate. We examine the limits imposed by galactic dynamics on the mass loss of the Galaxy due to GW emission, and we use them to put constraints also on the GW radiation from exotic objects, like binaries made of primordial black holes. We discuss the possibility that the events are due to GW bursts coming repeatedly from a single or a few compact sources. We examine different possible realizations of this idea, such as accreting neutron stars, strange quark stars, and the highly magnetized neutron stars (``magnetars'') introduced to explain Soft Gamma Repeaters. Various possibilities are excluded or appear very unlikely, while others at present cannot be excluded.Comment: 24 pages, 20 figure

    On the complementarity of pulsar timing and space laser interferometry for the individual detection of supermassive black hole binaries

    Full text link
    Gravitational waves coming from Super Massive Black Hole Binaries (SMBHBs) are targeted by both Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10^(-9) to p x 10^(-7) Hz (p=4, 8), and SLI, which operates from s x 10^(-5) up to 1 Hz (s = 1, 3). A SMBHB in the range 2x 10^(8) - 2 x 10^(9) solar masses (the masses are normalised to a (1+z) factor, the red shift lying between z = 0.2 and z=1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three Super Massive Black Hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating twenty-seven cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 x 10^(-4) y^(-2) or 3.3 x 10^(-6) y^(-2) (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. REST OF THE ABSTRACT IN THE PDF FILE.Comment: To appear in the Astrophysical Journa

    Particle acoustic detection in gravitational wave aluminum resonant antennas

    Get PDF
    The results on cosmic rays detected by the gravitational antenna NAUTILUS have motivated an experiment (RAP) based on a suspended cylindrical bar, which is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy electron beam. Mechanical vibrations originate from the local thermal expansion caused by warming up due to the energy lost by particles crossing the material. The aim of the experiment is to measure the amplitude of the fundamental longitudinal vibration at different temperatures. We report on the results obtained down to a temperature of about 4 K, which agree at the level of about 10% with the predictions of the model describing the underlying physical process.Comment: RAP experiment, 16 pages, 7 figure

    A Graphical Null Model for Scaling Biodiversity–Ecosystem Functioning Relationships

    Get PDF
    Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems. Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest. Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale-dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems. Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small-scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing

    Measurement of mechanical vibrations excited in aluminium resonators by 0.6 GeV electrons

    Get PDF
    We present measurements of mechanical vibrations induced by 0.6 GeV electrons impinging on cylindrical and spherical aluminium resonators. To monitor the amplitude of the resonator's vibrational modes we used piezoelectric ceramic sensors, calibrated by standard accelerometers. Calculations using the thermo-acoustic conversion model, agree well with the experimental data, as demonstrated by the specific variation of the excitation strengths with the absorbed energy, and with the traversing particles' track positions. For the first longitudinal mode of the cylindrical resonator we measured a conversion factor of 7.4 +- 1.4 nm/J, confirming the model value of 10 nm/J. Also, for the spherical resonator, we found the model values for the L=2 and L=1 mode amplitudes to be consistent with our measurement. We thus have confirmed the applicability of the model, and we note that calculations based on the model have shown that next generation resonant mass gravitational wave detectors can only be expected to reach their intended ultra high sensitivity if they will be shielded by an appreciable amount of rock, where a veto detector can reduce the background of remaining impinging cosmic rays effectively.Comment: Tex-Article with epsfile, 34 pages including 13 figures and 5 tables. To be published in Rev. Scient. Instr., May 200
    corecore