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We propose a quantum algorithm for the purification of a generic mixed state r of a n-qudit system by using

an ancillary n-qudit system. The algorithm is optimal in that sid the number of ancillary qudits cannot be

reduced, siid the number of parameters which determine the purification state uCl exactly equals the number of
degrees of freedom of r, and siiid uCl is easily determined from the density matrix r. Moreover, we introduce

a quantum circuit in which the quantum gates are unitary transformations acting on a 2n-qudit system. These

transformations are determined by parameters that can be tuned to generate, once the ancillary qudits are

disregarded, any given mixed n-qudit state.
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I. INTRODUCTION

Purification is one of the basic tools in quantum informa-

tion science f1,2g: Given a mixed quantum system S de-

scribed by a density matrix r it is possible to introduce an-

other ancillary system A, such that the state uCl of the

composite system S+A is a pure state and r is recovered

after partial tracing over A :r=TrAsuClkCud. The ancillary

system may be a physical environment that must be taken

into account when doing experiments on the system S, but

not necessarily so. It may be a fictitious environment that

allows us to prove interesting results about the system under

investigation.

Purification is a tool of great value in quantum informa-

tion science, with countless applications, for instance in the

study of the distance between quantum states f2g, of the ge-
ometry of quantum states f3g and of the quantum capacity of

noisy quantum channels f4g. Besides its theoretical rel-

evance, purification is interesting for experimental imple-

mentations of quantum information protocols requiring

mixed state. While the direct generation of a mixture r of

quantum states necessarily involves statistical errors, this

problem can be avoided if the purification state uCl is gen-
erated. Of course, the price to pay is that one has to work

with the enlarged system S+A, including the ancillary sys-

tem A.

Due to the partial trace structure the purification state uCl
of a density matrix r cannot be uniquely defined, as any

unitary transformation UA ^ 1S acting nontrivially on the an-

cillary system only maps the state uCl into a new state

uC8l= sUA ^ 1SduCl, which is again a purification of r. In this
paper, we propose a quantum protocol that selects a specific

purification uCl. Such purification turns out to be very con-

venient since the state uCl depends on a number of param-

eters exactly equal to the number of degrees of freedom of a

generic mixed state r and is easily determined as a function

of r. Furthermore, we design a quantum circuit given by a

sequence of quantum gates acting on both the system and the

ancillary qudits. The parameters which determine such quan-

tum gates can be tuned to generate, once the ancillary qubits

are disregarded, any mixed state r of system S. Finally, our

protocol works for any system of n qudits and requires n

ancillary qudits. We show that the number of ancillary qudits

is optimal, that is, it cannot be reduced if we wish to design

a quantum circuit capable of generating any n-qudit mixed

state.

Our paper is organized as follows. To set the notations, we

first briefly review the concept of purification sSec. IId. Then
we propose our purification scheme, moving from simple to

more and more complex cases. We start with the purification

of a single-qubit mixed state sSec. IIId, then we proceed with
the qutrit sSec. IVd and the two-qubit sSec. Vd cases, and

finally we illustrate the generic n-qudit case sSec. VId. The
Appendix provides a short account of the diagrams of states,

namely, of a tool very useful for the purposes of the present

paper.

II. PURIFICATION

Given a quantum system S described by the density ma-

trix r, it is possible to introduce another ancillary system A,

such that the state uCl of the composite system is pure and

r = TrAsuClkCud . s1d

This procedure, known as purification, allows us to associate

a pure state uCl with a density matrix r. A generic pure state

of the global system S+A is given by

uCl = o
a=0

M−1

o
i=0

N−1

Caiualuil , s2d

with hualj and huilj basis sets for the Hilbert spaces HA and

HS, of dimensions M and N, associated with the subsystems

A and S. Given a generic density matrix for system S,
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r = o
i,j=0

N−1

rijuilkju , s3d

we say that the state uCl defined by Eq. s2d is a purification
of r if

r = TrAsuClkCud = o
a=0

M−1

o
i,j=0

N−1

CaiCaj
! uilkju . s4d

The equality between Eqs. s3d and s4d implies

rij = o
a=0

M−1

CaiCaj
! . s5d

It is clear that Eq. s5d always admits a solution, provided the
Hilbert space of system A is large enough. More precisely, it

is sufficient to consider a system A whose Hilbert-space di-

mension is the same as that of system S. Indeed, if we ex-

press the reduced density matrix using its diagonal represen-

tation,

r = o
i

piuilkiu , s6d

a purification for density matrix s6d is given by

uCl = o
i

Îpiui8luil , s7d

with hui8lj orthonormal basis for HA. This purification proce-

dure requires the diagonalization of the density matrix r and,

therefore, is in general only numerically feasible.

In what follows, we propose a different purification

scheme, which is optimal in that, for the purification of a

generic n-qudit state, the number m=n of qudits of the an-

cillary system A cannot be reduced. While this is the case

also for well-known purification s7d based on spectral de-

composition s6d, we anticipate that our method readily pro-

vides a purification state uCl that depends on a number of

parameters exactly equal to the number of degrees of free-

dom of a generic r. Note that, even when the number of

ancillary qudits is optimal sm=n so that M=Nd, the number
2N2−2 of real coefficients Cai determining purification state

s2d is in general much larger than the number N2−1 of real

free parameters that must be set to determine a generic den-

sity matrix of size N. Different choices of the coefficients Cai

are, therefore, possible. Our choice provides a purification

state uCl depending on a number N2−1 of real parameters

exactly equal to the number of real freedoms of a generic

mixed states r. Furthermore, the coefficient Cai in Eq. s2d
can be easily determined from conditions s5d, in spite of the
fact that these equations are nonlinear. Finally, we will see in

the next sections that our scheme suggest a very convenient

quantum circuit for the preparation of a generic density ma-

trix r. To illustrate the working of our purification method,

we discuss cases of increasing complexity, from a single-

qubit state to a generic n-qudit state.

III. QUBIT

A. Mixed-state purification

We consider M=N=2 and set

C01 P R+,

C10 P R+, C11 = 0. s8d

We first determine C01 from Eq. s5d

r11 = uC01u
2 + uC11u

2 = uC01u
2, s9d

where the last equality follows from the second line of Eq.

s8d. Since we have also chosen C01 to be real and nonnega-

tive, we simply obtain

C01 = Îr11. s10d

Then we can determine C00 from the condition

r01 = C00C01
! + C10C11

! = C00C01, s11d

since C01 is already known from Eq. s9d. Finally, knowing
C00, we can derive C10 from the condition

r00 = uC00u
2 + uC10u

2. s12d

Taking into account that C10PR+, we have

C10 = Îr00 − uC00u
2. s13d

Note that, in the special case in which r11=0 we can

remove any ambiguity in the definition of the purification

state uCl by setting C00=0. In this case, r= u0lk0u is already a
pure state and its “purification” is uCl= u10l. Alternatively,
one can reshuffle the basis state according to u0l↔ u1l f8g.
For a generic state r11Þ0 and the state uCl reads, in the

huail= u00l , u01l , u10l , u11lj basis, as follows:

uCl = 3
C00

C01

C10

C11

4 = 3
r01
Îr11

Îr11

Îr00r11 − r10r01

r11

0

4 . s14d

B. Mixed-state generation

In this subsection, we provide a quantum circuit generat-

ing the state uCl of Eq. s14d, namely, the purification of a

generic single-qubit density matrix r. After disregarding the
ancillary qubit sthis corresponds to performing the partial

trace of the density matrix uClkCu over the ancillary qubitd,
we obtain the mixed state r. Therefore, we end up with an

experimentally viable procedure for the generation of a ge-

neric mixed single-qubit state by means of a two-qubit state

subjected to controlled unitary transformations.

The quantum circuit generating the state uCl is shown in
Fig. 1. A square box with a Greek letter inside shere, a or ud
stands for a rotation operator. Its matrix representation in the

hu0l , u1lj basis reads as follows:
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Rsad = Fcos a − sin a

sin a cos a
G . s15d

The full circle with −f above is the phase-shift gate P, de-

fined by the diagonal matrix

Ps− fd = diags1,e−ifd . s16d

As an overall phase factor is arbitrary, the action of this gate

is equivalently represented by the matrix diagseif ,1d. In the
controlled gates, the empty circle on the control qubit means

that the gate acts nontrivially sdifferently from identityd on
the target qubit if and only if the state of the control qubit is

u0l.
On the other hand, any single-qubit density matrix can be

generated by means of the quantum circuit in Fig. 1. Given

the input state uCil= u00l, the output state is

uC fl = 3
cos a cos ueif

cos a sin u

sin a

0
4 . s17d

This state is equal to purification state s14d, provided we set

sin a = C10,

cos a sin u = C01,

cos a cos ueif = C00. s18d

From the first equation we determine a, then from the second

u, and finally from the third f, as a function of the coeffi-

cients Cai, which in turn are determined by our purification

protocol from the density-matrix elements rij. Note that,

since by construction C01 ,C10$0, we can take a ,uP f0, p

2
g.

Finally, the phase fP f0,2pd.
For a straightforward extension of the results presented in

this section from the purification of a single qubit to more

complex systems it is convenient to express the quantum

circuit in Fig. 1 in terms of diagrams of states f5g, of which
a very brief account is given in the Appendix. The diagram

of states corresponding to the purification circuit of Fig. 1 is

shown in Fig. 2. Note that, given the input state u00l, output
state s17d is immediately written following the information

flow along the thick lines of the diagram of states. We stress

that other optimal purifications, where the purification state

is determined by N2−1=3 real parameters, are possible. Our

choice corresponds to setting C11=0, and C01 and C10 real.

We will see that the diagrams of states immediately lead to

optimal purifications also for arbitrarily complex systems.

C. “Invasion” of the Bloch ball

Using the quantum circuit in Fig. 1 we can write a generic

single-qubit state as

r = o
k=1

2

pkucklkcku , s19d

with p1=cos
2 a, p2=sin

2 a, uc1l is a single-qubit pure state,
and uc2l= u0l. The matrix representation of r in the hu0l , u1lj
basis is given by

r = cos2 aF cos2 u cos u sin ueif

cos u sin ue−if sin2 u
G + sin2 aF1 0

0 0
G

=
1

2
F 1 + Z X − iY

X + iY 1 − Z
G . s20d

The last equality corresponds to the usual Bloch-ball repre-

sentation of the sgenerally mixedd single-qubit states. It is

clear that once a is fixed, Eq. s20d represents a surface in the
sX ,Y ,Zd space, obtained after contracting the pure-state sunit
radiusd Bloch sphere of the factor cos2 a and translating it in

the positive Z direction by sin2 a. Plots of this surface for

different values of a are shown in Fig. 3. It is clear that all

the points of the Bloch ball are recovered when a goes from

0 to
p

2
. We can say that there is an “invasion” of the Bloch

ball starting from the north pole.

IV. QUTRIT

We consider M=N=3 and set

C02 P R+,

C11 P R+, C12 = 0,

C20 P R+, C21 = C22 = 0. s21d

We first obtain C02 from

r22 = uC02u
2 + uC12u

2 + uC22u
2 = uC02u

2. s22d

Once C02$0 is determined as C02=Îr22, we obtain C01 and

C00 from

α

-Φ
LSB θ

MSB

FIG. 1. Quantum circuit for the purification of a single qubit.

The qubits run from top to bottom from the least significant sLSBd
to the most significant sMSBd.

θα Φ
00

10

11

01

0

Real

Real

FIG. 2. Diagram of states for the purification of a single qubit.

Starting from the input state u00l, information flows on the thick

lines. We explicitly indicate at the right-hand side that the coeffi-

cients C01 and C10 are real, while C11=0.
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r12 = C01C02
! + C11C12

! + C21C22
! = C01C02, s23d

r02 = C00C02
! + C10C12

! + C20C22
! = C00C02. s24d

Then we obtain C11 from

r11 = uC01u
2 + uC11u

2 + uC21u
2 = uC01u

2 + C11
2 , s25d

and, finally, C10 and C20 from

r01 = C00C01
! + C10C11

! + C20C21
! = C00C01

! + C10C11,

s26d

r00 = uC00u
2 + uC10u

2 + C20
2 . s27d

We stress that conditions s21d lead to a purification state

determined by N2−1=8 free real parameters, exactly corre-

sponding to the number of real freedoms needed to set a

generic density matrix for a qutrit. Conditions s21d are

readily derived if the purification of a generic qutrit state is

implemented by means of the diagram of states shown in

Fig. 4. In this figure, a box with two Greek letters written on

top of it sfor instance, a1 and a2d represents a unitary trans-
formation whose matrix representation has, in the

hu0l , u1l , u2lj basis, the first column given by

3
cos a1 cos a2

cos a1 sin a2

sin a1

4 . s28d

Such transformation maps the input state u0l into

cos a1 cos a2u0l + cos a1 sin a2u1l + sin a1u2l . s29d

Finally, the box with the letter u3 on top of it represents the
rotation Rsu3d acting on the two-dimensional subspace

spanned by the states u0l and u1l, with R defined by Eq. s15d.
Given the input state u00l, the output purification state

uCl=oa,iCaiuail can be immediately written by following

the thick lines of the diagram of states in Fig. 4. We obtain

C00 = cos a1 cos a2 cos u1 cos u2e
if1,

C01 = cos a1 cos a2 cos u1 sin u2e
if2,

C02 = cos a1 cos a2 sin u1,

C10 = cos a1 sin a2 cos u3e
if3,

C11 = cos a1 sin a2 sin u3,

C12 = 0,

C20 = sin a1,

C21 = 0,

C22 = 0. s30d

These relations can be easily inverted to obtain the param-

eters ha j ,uk ,flj as a function of the coefficients Cai and,
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FIG. 3. sColor onlined “Invasion” of the Bloch ball: cos2 a=0
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θ3

Φ
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0

0

0
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FIG. 4. Diagram of states for the purification of a single qutrit.

To simplify the plot, only the thick lines corresponding to the in-

formation flow are shown inside the boxes. The angles ai ,u j

P f0, p

2
g, while the phases fkP f0,2pd.
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therefore, of the elements of the density matrix r. Therefore,
the quantum circuit represented by the diagram of states of

Fig. 4 can be used to generate any given qutrit state r, once
the ancillary qutrit is disregarded. Finally, we point out that

the number of real parameters hai ,uk ,flj that determine the
state uCl is equal to 8, that is, exactly to the number of

parameters needed to determine a sgenerally mixedd single-
qutrit state r.

It is clear from the purification drawn in Fig. 4 that we

can write a generic single-qutrit state as

r = o
k=1

3

pkucklkcku , s31d

with p1=cos
2 a1 cos

2 a2, p2=cos
2 a1 sin

2 a2, p3=sin
2 a1,

uc1l is a single-qutrit pure state, uc2l is a pure state residing
in the two-dimensional subspace spanned by u0l and u1l, and
uc3l= u0l. The picture developed in Sec. III C about the inva-

sion of the single-qubit Bloch ball by means of suitably

scaled and translated pure-qubit Bloch spheres may be gen-

eralized to the single-qutrit case. The role of the Bloch

sphere is here played by the surface of single-qutrit pure

states and the volume of all single-qutrit states is “invaded”

when the parameters pk are varied, with the constraint okpk
=1.

V. TWO QUBITS

We consider M=N=4 and set

C03 P R+,

C12 P R+, C13 = 0,

C21 P R+, C22 = C23 = 0,

C30 P R+, C31 = C32 = C33 = 0. s32d

We first obtain C03 from

r33 = uC03u
2 + uC13u

2 + uC23u
2 + uC33u

2 = uC03u
2, s33d

then C02, C01, and C00 from

r23 = C02C03
! + C12C13

! + C22C23
! + C32C33

! = C02C03,

s34d

r13 = C01C03
! + C11C13

! + C21C23
! + C31C33

! = C01C03,

s35d

r03 = C00C03
! + C10C13

! + C20C23
! + C30C33

! = C00C03.

s36d

Then we obtain C12 from

r22 = uC02u
2 + uC12u

2 + uC22u
2 + uC32u

2 = uC02u
2 + C12

2 , s37d

then C11 and C10 from

r12 = C01C02
! + C11C12

! + C21C22
! + C31C32

! = C01C02
! + C11C12,

s38d

r02 = C00C02
! + C10C12

! + C20C22
! + C30C32

! = C00C02
! + C10C12.

s39d

Also we obtain C21 from

r11 = uC01u
2 + uC11u

2 + uC21u
2 + uC31u

2 = uC01u
2 + uC11u

2 + C21
2 ,

s40d

then C20 from

r01 = C00C01
! + C10C11

! + C20C21
! + C30C31

! = C00C01
! + C10C11

!

+ C20C21, s41d

and, finally, C30 from

r00 = uC00u
2 + uC10u

2 + uC20u
2 + C30

2 . s42d

As for the previous examples, we point out that the num-

ber N2−1=15 of free parameters determining the purification

state uCl cannot be reduced given a generic two-qubit mixed
state r. Moreover, conditions s32d are determined from the

diagram of states for the purification of a generic two-qubit

state shown in Fig. 5. Following the information flow from

the input states u0000l we can immediately write down the

output purification state uCl=oa,iCaiuail. We obtain
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FIG. 5. Diagram of states for the purification of a two-qubit

state. To simplify the plot, only the thick lines corresponding to the

information flow are shown inside the boxes. The angles ai ,u j

P f0, p

2
g, while the phases fkP f0,2pd.
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C0000 = cos a1 cos a2 cos u1 cos u3e
if1,

C0001 = cos a1 cos a2 cos u1 sin u3e
if2,

C0010 = cos a1 cos a2 sin u1 cos u4e
if3,

C0011 = cos a1 cos a2 sin u1 sin u4,

C0100 = cos a1 sin a2 cos u2 cos u5e
if4,

C0101 = cos a1 sin a2 cos u2 sin u5e
if5,

C0110 = cos a1 sin a2 sin u2,

C0111 = 0,

C1000 = sin a1 cos a3 cos u6e
if6,

C1001 = sin a1 cos a3 sin u6,

C1010 = 0,

C1011 = 0,

C1100 = sin a1 sin a3,

C1101 = 0,

C1110 = 0,

C1111 = 0. s43d

As in the previous cases, we can invert these equations and

determine the parameters ha j ,uk ,flj in terms of the coeffi-

cients Cai and, therefore, of the elements of the density ma-

trix r.
We can see from Fig. 5 that a generic two-qubit state can

be written as

r = o
k=1

4

pkucklkcku , s44d

with p1=cos
2 a1 cos

2 a2, p2=cos
2 a1 sin

2 a2, p3
=sin2 a1 cos

2 a3, and p4=sin
2 a1 sin

2 a3. The invasion pic-

ture developed in Sec. III C can be extended also to the

present case, with the volume of all two-qubit states invaded

when the parameters pk are varied, under the constraint

okpk=1. Note that the number of real parameters hai ,uk ,flj
used to determine the state uCl is 15, that is, exactly the

number of parameters required to determine a generic two-

qubit state.

VI. n QUDITS

We consider M=N=dn and set

C0,N−1 P R+,

C1,N−2 P R+, C1,N−1 = 0,

C2,N−3 P R+, C2,N−2 = C2,N−1 = 0,

]

CN−1,0 P R+, CN−1,1 = CN−1,2 = . . . ,

=CN−1,N−1 = 0. s45d

The general procedure for determining the coefficient Cai

is clear from the previous examples.

sid We first determine C0,N−1 from rN−1,N−1,

siid then C0j from r j,N−1, with j=N−2, . . . ,0,

siiid then C1,N−2 from rN−2,N−2,

sivd then C1j from r j,N−2, with j=N−3, . . . ,0 , . . .,

svd and, finally, CN−1,0 from r00.
This purification is optimal as the number of qudits of the

ancillary system cannot be reduced. The number of real free

parameters that must be set to determine a density matrix of

size dn is d2n−1 fthe −1 term comes from the normalization

condition Trsrd=1g. Therefore, an ancillary system of n−1

qudits is not sufficient to purify r, as a pure state uCl in the
Hilbert space of n+ sn−1d=2n−1 qudits has 2d2n−1−2 free-

doms sthe −2 term is due to the normalization condition for

uCl and to the fact that a global phase factor in uCl is arbi-
traryd. This number is not sufficient as 2d2n−1−2,d2n−1 for

any d$2, n$1. On the other hand, as illustrated Fig. 6, the

number of free real parameters in our purification method is

exactly d2n−1. From the schematic drawing in Fig. 5 we can

also see that the n-qudit state can be written as

r = o
k=1

dn

pkucklkcku , s46d

with the pure states from uc1l to ucdnl residing in subspaces
of decreasing dimension, from dn to 1.

We note that the tensor product structure of many-qudit

quantum systems does not play any role in our purification

protocol. That is to say, the same purification scheme applies

to a system of n qudits or to a single system of size N=dn. Of

course, the practical implementation of the protocol will de-

pend on the specific quantum hardware at disposal.

From the mathematical viewpoint, our purification proto-

col can be seen as the Cholesky decomposition f6g of the
density matrix r. If we consider the coefficients Cai as ele-

ments of a dn3dn matrix C, then its transpose D;CT is a

upper triangular matrix and Eq. s5d reads

r = CTC! = DDTp = DD†, s47d

namely, it is the Cholesky decomposition of the density ma-

trix r. Such decomposition is unique when r is positive,

while the ambiguities arising when r is singular may be re-
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moved by suitable prescriptions or reshuffling, as previously

discussed for the single-qubit case.

It is interesting to remark that the Cholesky decomposi-

tion has already been used in the context of quantum infor-

mation science in parametrizing the density operator in order

to guarantee positivity f7g. The purpose of Ref. f7g was to
present a universal technique for quantum-state estimation.

VII. FINAL REMARKS

In summary, we have proposed an algorithm for the puri-

fication of a generic n-qudit state. This algorithm is optimal,

in that the number n of ancillary qudits used for the purifi-

cation cannot be further reduced. Moreover, our algorithm

can also be seen as a quantum protocol for the generation of

a generic n-qudit state by means of suitable unitary opera-

tions applied both to the system and to the ancillary qudits,

with the ancillary qudits eventually disregarded. While also

well-known purification s7d based on spectral decomposition

s6d uses n ancillary qudits, our method is optimal in that it

readily provides a purification state that depends on a num-

ber of parameters exactly equal to the number of degrees of

freedom of the generic n-qubit state that we wish to purify.

It is well known that the purification uCl of a generic

mixed state r cannot be uniquely determined, as the partial

trace over the ancillary qudits is invariant under any unitary

transformation UA ^ 1S acting nontrivially on the ancillary

qudits only. Indeed, we have

r = TrAsuClkCud = TrAsuC8lkC8ud , s48d

with

uC8l = sUA ^ 1SduCl . s49d

It is sufficient to add the unitary transformation UA ^ 1S at the

end of our purification protocol to obtain any 2n-qudit puri-

fication uC8l of a n-qudit state r. On the other hand, we can
say that our protocol selects a very convenient purification as

the coefficients of the wave function uCl in the computa-

tional basis are easily determined from the density matrix r
and the quantum circuit generating r can be immediately

drawn.

APPENDIX: DIAGRAMS OF STATES

Diagrams of states f5g graphically represent how quantum

information is elaborated during the execution of a quantum

circuit. In the usual way of drawing a quantum circuit f1,2g
each horizontal line represents a qubit. In contrast, in dia-

grams of states we draw a horizontal line for each state of the

computational basis. Therefore, diagrams of states are less

synthetic but may help us to clearly visualize quantum infor-

mation flow in a quantum circuit.

For the purposes of the present paper, it will be sufficient

to show the diagrams of states for elementary single-qubit

quantum gates. The phase-shift gate Psfd, defined by
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FIG. 6. Sketch of the diagram of states for the purification of a

n-qudit state by means of 2n qudits. The diagram has d2n lines, one

for each state of the computational basis. We can cluster groups of

dn lines. The constraints and the number of real freedoms for each

cluster are highlighted. If we add these numbers plus the

dn−1-independent weights in mixture s46d, we obtain a total num-
ber of d2n−1 degrees of freedom.
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FIG. 7. Quantum circuit sleftd and diagram of states srightd for
the phase-shift gate.
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FIG. 8. Quantum circuit sleftd and diagram of states srightd for
the Rsud gate.
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FIG. 9. Quantum circuit sleftd and diagram of states srightd for
the generation of a generic single-qubit state. To simplify the plot,

only the thick lines corresponding to the information flow are

shown inside the boxes.
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Eq. s16d, and the rotation gate Rsud, defined by Eq. s15d, are
shown in Fig. 7 and Fig. 8, respectively. Finally, the genera-

tion of a generic single-qubit state cos uu0l+sin ueifu1l start-
ing from the input state u0l is shown in Fig. 9. The informa-

tion flows on the thick lines, from left to right, while thinner

lines correspond to absence of information. Note that, fol-

lowing the thick lines, the final state can here be immediately

written.
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