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Abstract
1.	 Global biodiversity is declining at rates faster than at any other point in human  

history. Experimental manipulations at small spatial scales have demonstrated that 
communities with fewer species consistently produce less biomass than higher 
diversity communities. Understanding the consequences of the global extinction 
crisis for ecosystem functioning requires understanding how local experimental 
results are likely to change with increasing spatial and temporal scales and from 
experiments to naturally assembled systems.

2.	 Scaling across time and space in a changing world requires baseline predictions. 
Here, we provide a graphical null model for area scaling of biodiversity–ecosystem  
functioning relationships using observed macroecological patterns: the species–
area curve and the biomass–area curve. We use species–area and biomass–area 
curves to predict how species richness–biomass relationships are likely to change 
with increasing sampling extent. We then validate these predictions with data 
from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian 
tropical dry forest.

3.	 Our graphical null model predicts that biodiversity–ecosystem functioning rela-
tionships are scale-dependent. However, we note two important caveats. First, 
our results indicate an apparent contradiction between predictions based on 
measurements in biodiversity–ecosystem functioning experiments and from scal-
ing theory. When ecosystem functioning is measured as per unit area (e.g. biomass 
per m2), as is common in biodiversity–ecosystem functioning experiments, the 
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1  | INTRODUC TION

Worldwide, drastic environmental changes are leading to biodi-
versity loss at regional and global scales (Millenium Ecosystem 
Assessment,  2005; Newbold et  al.,  2015; Tittensor et  al.,  2014). 
Many predict that the rate of species loss will accelerate in the com-
ing decades (Pereira et al., 2010; Pimm et al., 2014). Problematically, 
biodiversity supports many crucial ecosystem functions and services 
such as biomass production, carbon sequestration, and nitrogen 
cycling and retention (Cardinale et  al.,  2012; Hooper et  al.,  2005; 
Weisser et  al.,  2017). That is, in small-scale experiments, ecosys-
tem functioning increases with increasing species richness (Isbell 
et al., 2015; Reich et al., 2001, 2012; Roscher et al., 2004; Schnitzer 
et  al.,  2011; Tilman et  al.,  2001; van Ruijven & Berendse,  2003; 
Zhang et al., 2012). In naturally assembled ecosystems, species rich-
ness appears to have an even larger effect on some functions like 
biomass production (Duffy et al., 2017; Liang et al., 2016; van der 
Plas, 2019; Zhang et al., 2012). Thus, ongoing species loss will likely 
have serious consequences for how ecosystems function (Cardinale 
et al., 2011; Hooper et al., 2012).

Yet, the results from local-scale experiments and observa-
tional studies may not be representative of the regional and global 
scales where species loss is occurring for several reasons (Craven 
et al., 2020; McGill et al., 2015). First, species loss in biodiversity 
experiments is often simulated randomly, non-random loss may 
have larger or smaller impacts on ecosystem functioning than ran-
dom species loss (Isbell et al., 2008; Komatsu et al., 2019). Second, 
the relevant processes determining both biodiversity maintenance 
and ecosystem functioning change with increasing scale. Local 

processes like niche differentiation and plant soil-feedback may be 
most relevant at small scales while processes like dispersal within 
a meta-community are likely more important at regional scales 
(Leibold et  al.,  2017). Finally, the patterns of biodiversity change 
are likely different across scales with changes in community com-
position and species identity changing the most at small scales and 
loss dominating at the global scale (Blowes et al., 2019; Dornelas 
et al., 2014; McGill et al., 2015). Understanding how to link local-​
scale results to the regional and global scales where species loss is 
occurring is crucial for predicting the consequences of the global 
extinction crisis.

Furthermore, theory predicts that the relationship between 
biodiversity and ecosystem functioning is likely scale-dependent. 
A recent review on the theory predicting scale dependency of 
biodiversity–ecosystem functioning relationships suggests that 
there are four non-mutually exclusive process-based reasons for 
scale dependence (Gonzalez et al., 2020). First, based on coexis-
tence theory, as spatial scale increases the opportunity for niche 
partitioning increases. This, in turn, increases the importance of 
species richness for ecosystem functioning. Second, if species 
abundance responds to environmental fluctuations in space and 
time then environmental autocorrelation determines the satura-
tion rate of biodiversity–ecosystem functioning relationships. If 
this environmental autocorrelation is strong, then biodiversity is 
more important for ecosystem functioning at larger spatial scales. 
Third, connectivity between local communities embedded within a 
meta-community can increase or decrease the reliance of ecosys-
tem functioning on biodiversity across scales. Finally, the structure 
of networks within and among local communities is likely to result 

slope of the biodiversity ecosystem functioning relationship should decrease with 
increasing scale. Alternatively, when ecosystem functioning is not measured per 
unit area (e.g. summed total biomass), as is common in scaling studies, the slope of 
the biodiversity–ecosystem functioning relationship should increase with increas-
ing spatial scale. Second, the underlying macroecological patterns of biodiversity 
experiments are predictably different from some naturally assembled systems. 
These differences between the underlying patterns of experiments and naturally 
assembled systems may enable us to better understand when patterns from bio-
diversity–ecosystem functioning experiments will be valid in naturally assembled 
systems.

4.	 Synthesis. This paper provides a simple graphical null model that can be extended 
to any relationship between biodiversity and any ecosystem functioning across 
space or time. Furthermore, these predictions provide crucial insights into how 
and when we may be able to extend results from small-scale biodiversity experi-
ments to naturally assembled regional and global ecosystems where biodiversity is 
changing.

K E Y W O R D S

grasslands, productivity, species richness–area relationship, statistical scaling, upscaling
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in scale dependence of relationships between diversity and eco-
system functioning.

Importantly, understanding the potential impact of biodiversity 
loss on ecosystem functioning at the global scale requires two dif-
ferent types of scaling. First, biodiversity experiments often occur at 
small spatial scales. To apply this research to the global problem of bio-
diversity loss, we must understand how these relationships are likely 
to change with increasing sampling extent (i.e. from 1 m2 to 1 km2, area 
scaling). Second, biodiversity experiments are abstractions of naturally 
assembled systems where diversity is manipulated, and other factors 
are held constant. Understanding the consequences of biodiversity 
change on ecosystem functioning also requires a conceptual scaling 
from experiments to naturally assembled systems. Recent work has 
attempted to bridge these gaps in our understanding with conceptual 
advances (Gonzalez et al., 2020; Isbell et al., 2017), empirical assess-
ments using observational biodiversity gradients at multiple spatial 
scales (Chisholm et al., 2013; Craven et al., 2020; Luo et al., 2019)  

and theory (Isbell et  al.,  2019; Thompson et  al.,  2018). The major 
take-home message of most of these studies has been that the im-
portance of biodiversity should increase with increasing area sam-
pled (reviewed by Gonzalez et al., 2020).

Here, we provide a simple graphical null model that uses species–​
area curves and biomass–area curves (Figure 1) to predict how bio-
diversity–ecosystem functioning relationships should change with 
increasing sampling extent. The goal of this graphical null model 
is to provide a simple scaling framework that enables us to use 
small-scale experimental and observational datasets and extrap-
olate these patterns across spatial scales that are unmeasured. 
This extrapolation represents the expected real-world scaling rela-
tionship, given that the patterns we observe at these small scales 
hold across others. This graphical null model focuses primarily on 
scaling up with increasing sampling extent but may have import-
ant implications for how to scale from experimental to naturally 
assembled systems.

F I G U R E  1   Graphical depiction of the underlying math of the plant species richness–biomass relationship across different spatial scales. 
(a) Locally, species richness has a nonlinear relationship with sampling extent while biomass has a linear relationship with sampling extent. 
For a specific area Ai, the species–area curve represents the average number of species Si found on plots of area Ai. Similarly, for a specific 
area Ai the biomass area curve yields the average total biomass Bi of species found on that area. The corresponding coordinate pairs 
(Si,Bi) form the graph of the species richness biomass production relationship (b). These coordinate pairs reveal an underlying accelerating 
nonlinear relationship between species richness and biomass production across scales. At any given scale, the species richness biomass 
production curve contains the origin (because at zero species richness, biomass production is zero and vice versa), as well as the point (Si,Bi) 
of measured averages. If the species richness biomass relationship is linear (see Figure S1 for alternative interpretations of this shape) and 
goes through these two points, then the predicted slope of the species richness–biomass relationship is the average biomass for that area 
divided by the average species richness for that area (c) and the slope of the species richness biomass production relationship increases with 
increasing spatial scale of sampling. (d) When biomass is measured in terms of per unit area, it is not likely to change with increasing sampling 
extent. (e) If this is the case, then the species–area curve determines the slope of the species richness–biomass relationship with increasing 
spatial scale (f). Thus, we expect the per unit area version of the species richness–biomass relationship to have a decreasing slope with 
increasing area and that the slope will decrease at a decelerating rate. See Supporting Information S1 for mathematical derivation of these 
predictions



1552  |    Journal of Ecology BARRY et al.

2  | MATERIAL S AND METHODS

2.1 | Deriving the graphical null model

If the species–area relationship is nonlinear (Braun-Blanquet, 1932; 
Cain, 1938; Connor & McCoy, 1979; Gleason, 1922; Lomolino, 2000, 
2001; Preston,  1960; Rice & Kelting,  1955; Rosenzweig,  1995; 
Figure 1a), then when species richness and ecosystem functioning 
are positively related the relationship between the two must change 
with increasing sampling extent. This change occurs because species 
richness and ecosystem functioning independently depend on area 
but not at the same rate (Figure 1a,b; Supporting Information S1).

Whether the slope of a biodiversity–ecosystem functioning re-
lationship increases or decreases depends on how that ecosystem 
function scales. If an ecosystem function increases linearly with 
increasing sampling extent (Figure  1a; Figure  S1), then the appar-
ent contribution of each additional species to ecosystem function-
ing will increase with increasing sampling extent. Regardless of 
the processes involved, the slope of this biodiversity–ecosystem 
functioning relationship will increase, as predicted by current scal-
ing theory (Figure 1c, as predicted by Gonzalez et al., 2020; Isbell 
et al., 2017; Thompson et al., 2018). However, ecosystem function-
ing in biodiversity–ecosystem functioning studies is commonly stan-
dardized per unit area (e.g. biomass per m2, e.g., Isbell et al., 2011; 
Meyer et al., 2016; Reich et al., 2012; Roscher et al., 2004; Spehn 
et  al.,  2005; van Ruijven & Berendse, 2003; Weisser et  al.,  2017). 
These data are standardized to ease comparison between plots and 
across scales when relevant (Roscher et al., 2004, 2005). In per unit 
area terms, functioning should be invariant to area (Figure  1d). If 
ecosystem functioning is invariant to area, then we predict that the 
slope of the biodiversity–ecosystem functioning relationship will de-
crease with increasing sampling extent (Figure 1e,f).

2.2 | Empirically validating the graphical null model

To validate this model, we used empirical data from two sites: a natu-
rally assembled savanna at Cedar Creek Ecosystem Science Reserve 
(CCESR) in central Minnesota, USA and the seasonally dry tropical 
forest of the Barro Colorado Island 50-Ha plot in on Barro Colorado 
Island in Panama.

2.3 | Site description: Cedar Creek Ecosystem 
Science Reserve

We collected data to empirically validate this null model in a natu-
rally assembled savanna at CCESR in July of 2012. Our sites were 
located on Typic Udipsamment soils (Dickie et al., 2007) with a mean 
annual precipitation of 77.60  ±  4.57  cm (95% confidence interval 
for 1962–2012). CCESR consists of a matrix of prairies and savan-
nas. We used two oak savannas (predominantly Quercus macrocarpa) 
of approximately equal type, age and fire frequency. We chose oak 

savannas with similar burning and establishment histories that had 
little woody biomass and coarse woody debris to maximize similarity 
in nutrient availability and community composition between sites. 
The two oak savannas we chose were both burned in 2011 after the 
summer growing season; therefore, all herbaceous biomass was con-
sidered to be the current year's growth. Both savannas were burned 
frequently, 9 out of every 10 years and 4 out of every 5 years, re-
spectively, and were established 48  years ago from abandoned 
farmland (Peterson & Reich,  2001). The dominant tree species at 
both sites were bur oak Quercus macrocarpa and northern pin oak 
Quercus ellipsoidalis.

We established five 20 m by 20 m plots across these two oak sa-
vanna sites (three in one and two in the other). We avoided portions 
of the savannas with high amounts of woody biomass because many 
of the common woody savanna species are resistant to fire and we 
could not be certain that any woody biomass was indicative of this 
season's growth. We established all plots >3 m from any adult trees. 
Each plot was divided into 25 4 m × 4 m subplots.

2.4 | Biomass harvest: CCESR

To measure biomass, we harvested the above-ground vegetation in 
10 cm × 50 cm strips in the centre of each subplot in July of 2012. We 
harvested all vegetation strips within 6 days of each other to avoid 
seasonal and temporal variation in composition and biomass. We 
sorted the harvested vegetation to the species level when possible 
(95.46% of samples), genus level when species was not possible due 
to inadequate size of leaf matter (3.3% of samples) or categorized it 
as live litter when unidentifiable (1.24% of samples). We calculated 
species richness as the number of identified species in a clip strip. 
Vegetation was refrigerated when not being sorted. Once sorted, we 
placed each species in a paper envelope and dried all samples for at 
least 10 days in a 40°C drying oven. After 10–15 days, we weighed 
all samples and recorded the dry biomass.

2.5 | Site description: Barro Colorado Island 
50-Hectare Plot

In addition to data collected at CCESR, we used data collected in the 
Barro Colorado Island 50-hectare plot from the 2015 census to vali-
date this method outside of a grassland ecosystem (see Condit, 1998 
for data collection methods).

2.6 | Barro Colorado Island 50-hectare plot: 
Subsampling method

We assigned each 5 × 5 m subplot within the BCI 50-hectare plot 
a random number. We then randomly subsampled (using the com-
mand ‘sample’) these subplots to assemble non-spatially contiguous 
subsamples of the following areas: 25, 50, 75, 100, 150, 200,225, 
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300 and 400 m2. We randomly selected 70 of each subsample size 
for inclusion in our analysis. We used 70 as our sample size because 
it allowed for the inclusion of 400 m2 sampling areas which are visu-
ally comparable to the largest sampling area included in our data 
from CCESR. We subsampled 70 of smaller sampling extents to pre-
vent differences in sample size which may be relevant for our data-
set from CCESR where sample sizes varied from 125 at the smallest 
sampling extent to 5 at the largest sampling extent due to the nested 
nature of our sampling design. Furthermore, we used spatially non-
contiguous subsamples because the shape of the species–area curve 
changes between randomly sampled landscapes and landscapes 
where nested samples have been taken (Rosenzweig, 1995). Thus, 
to ensure that our results were not dependent upon the nested sam-
pling schema used at CCESR, we subsampled randomly within the 
BCI 50-ha plot.

2.7 | Data analysis

To validate whether the observed relationship between species rich-
ness and biomass production was dependent on sampling extent in 
the way we predict, we also examined the relationship of both spe-
cies–richness and biomass production individually with increasing 
sampling extent. We fit linear and ‘Michaelis–Menten’ (nonlinear) 
models to our data, two commonly used functions for describing 
biodiversity–ecosystem functioning relationships (Hooper et  al., 
2005; Roscher et  al.,  2004; Tilman et  al.,  2001), and selected the 
model with the lower Akaike Information Criterion (AIC) to deter-
mine whether the relationships between biomass production and 
area, species richness and area, and species richness and biomass 
production were linear or nonlinear. When we were unable to calcu-
late parameters for a Michaelis–Menten curve using the ‘SSmicmen’ 
command in R and an ‘nls’ command would not converge with uni-
form starting values (i.e. 1 for both parameters), we assigned an NA 
to the nonlinear model and considered the linear model to be a bet-
ter fit.

We then used a mixed effects ANCOVA to determine whether 
the relationship between species richness and biomass production 
changed with increasing sampling extent using the command ‘lme’ 
when our sampling design necessitated the inclusion of random 
effects and ‘gls’ when random effects were not necessary. Our 
sampling design at CCESR was nested with subplots within plots 
across two sites. We therefore included a nested random effect of 
plot within site at Cedar Creek. Our randomized sampling design at 
BCI did not necessitate the inclusion of random effects. We tested 
all models for heteroscedasticity using a Breusch–Pagan test 
(Breusch & Pagan, 1979). When models had significant heterosce-
dasticity, we added a weighted variance structure to the model 
which was specified as an exponential function of the fitted value. 
This variance structure reduced heteroscedasticity significantly 
resulting in a non-significant Breusch–Pagan test for all models. 
All analyses were conducted in R Statistical Software and plotted 
using ‘ggplot2’.

3  | RESULTS

3.1 | Species richness–biomass relationships match 
macroecological expectations

We produced species–area relationships (Figure 2) and biomass–
area relationships (Figure  3) from (a) nested plots increasing in 
size in a naturally assembled savanna at Cedar Creek Ecosystem 
Science Reserve and (b) using a resampling protocol on the tree 
community in the Barro Colorado Island (BCI) 50-hectare plot. 
Note that with regards to our results we use the term biomass 
to refer to our measures and biomass production to refer to the 
general ecosystem function. We distinguish between these two 
terms because while biomass is often a good proxy for biomass 
production, the latter requires a measure of turnover through 
time which we do not present here for BCI. We found that, at the 
relatively small spatial scales measured here, species richness was 
best fit with a nonlinear curve with increasing sampling extent at 
both sites (Table S1; Figure 2a,b). Alternatively, biomass increased 
linearly with increasing sampling extent at both sites (Table  S1; 
Figure 3a,c). By contrast, biomass per m2 was invariant to sampling 
extent at both sites (Table S1, Figure 2b,d).

F I G U R E  2   Species–area curve in a Minnesota savanna and 
the Barro Colorado Island 50-Ha plot. (a) We found that plant 
communities in five recently burned savannas at the Cedar Creek 
Ecosystem Science Reserve had a nonlinear species–area curve as 
predicted. (b) Similarly, randomly sampled and combined subplots 
of the Barro Colorado Island 50-ha plot also had a significantly 
nonlinear species–area curve
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We then used these area relationships to predict the slope of 
the species richness–biomass relationship at each sampling extent 
if the species richness–biomass relationship intersects the origin 
(Figure 4). That is, we assumed that when an ecosystem has no spe-
cies it also cannot produce biomass. At each sampling extent, we 
examined the species richness–biomass relationship in two different 
ways: (a) the relationship between total species richness per plot and 

total biomass per plot and (b) the relationship between total species 
richness per plot and biomass per m2 (e.g. Isbell et al., 2011).

In accordance with our predictions, the slope of the species  
richness–total biomass relationship increased with increasing sam-
pling extent at both sites (Figure 5a,c). In fact, no predicted slope 
for the species richness–biomass relationship was outside of the 
confidence limits of the observed slope (Table S2). Mathematically, 

F I G U R E  3   Biomass–area curves 
in a Minnesota savanna and the Barro 
Colorado Island 50-hectare plot. (a) When 
biomass was summed, it scaled linearly 
with increasing area. (b) When biomass 
was examined per m2 (as is commonly 
done in biodiversity–ecosystem function 
experiments), there was no significant 
relationship between biomass and plot 
area. (c) When biomass was summed in 
randomized subsamples of the BCI 50-ha 
plot, it increased in a linear fashion with 
increasing plot area. (d) Biomass per m2 
in the BCI 50-ha plot did not significantly 
change with increasing plot area

F I G U R E  4   Predicted slopes of the species richness–biomass relationships at each scale for both absolute biomass and biomass per m2. 
When biomass is summed, we predict that the species richness–biomass production relationship will have an increasing slope with increasing 
area, for both recently burned savannas (a) and the randomized subplots of the BCI 50-ha plot (c). For biomass per m2, we predict that the 
slope of the species richness–biomass production relationship will decrease with increasing area for both recently burned savannas (b) and 
the BCI 50-ha plot randomized subplots (d) 
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additional species contributed more to biomass production at the 
largest sampling extent, whereas the smallest sampling extent had 
the smallest relative gains in total biomass with each additional spe-
cies. In terms of biomass per m2, we found that the slope of the 
species richness–biomass relationship decreased with increasing 
sampling extent (Figure  5b,d). That is, mathematically, each addi-
tional species contributed less to biomass per m2 at the largest sam-
pling extent. The smallest sampling extent had the largest relative 
gains in biomass per m2 with each additional species. At BCI, the 
slope decreased significantly with increasing sampling extent, while 
at Cedar Creek this change was not statistically significant (Table S3).

4  | DISCUSSION

Our primary goal in this study is to test whether a simple graphi-
cal null model—which leverages the widely observed and broadly 
studied relationships between biodiversity and area, and between 
biomass and area—can be used to characterize how relationships 
between biodiversity and ecosystem functioning change across spa-
tial scales. We predict that the null expectation for the observed 
relationship between biodiversity and ecosystem functioning should 
be both scale-dependent and predictable, based on the difference 

in shapes between the largely nonlinear species–area relationship, 
versus the largely linear biomass–area relationship.

Importantly, the resulting graphical null model relating biodi-
versity and functioning does not imply a causal link between the 
two, nor does it suggest that extrapolations made using such a null 
model will be accurate. For example, if the underlying environmen-
tal conditions are different between the scales, these predictions 
may not be ecologically relevant. Rather, this graphical null model 
demonstrates the necessary outcome of the shared underlying rela-
tionships between spatial scale and both biodiversity and ecosystem 
functioning. Thus, if a scaling relationship that is consistent with our 
graphical null model is observed in empirical data, this result should 
not be taken as an indication of specific underlying causal links or 
biologically relevant processes, but rather, as an expected outcome 
of well-established mathematical scaling relationships.

4.1 | Standardizing ecosystem functioning measures 
across sampling extents

Our null model predicts that the slope of the species richness–total 
biomass relationship should increase with increasing sampling ex-
tent and alternatively that the slope of the species richness–biomass 

F I G U R E  5   Actual species richness–biomass relationships and predicted species richness–biomass relationships in recently burned 
savannas and randomly selected subplots of the Barro Colorado Island 50-hectare plot. Throughout, dashed lines represent predictions 
and solid lines represent linear models from data. (a) When biomass is summed, the slope of the species richness–biomass production 
relationship increases with increasing spatial scale as predicted in five recently burned savannas. (b) When biomass was measured as biomass 
per m2, as is commonly calculated from biodiversity–ecosystem function experiments, the slope of the species richness–biomass production 
relationship decreases with increasing spatial scale. (c) Furthermore, from randomly subsampled subplots of the BCI 50-hectare plot, we 
found similarly that the species richness–biomass production (in terms of total above-ground biomass) relationship had an increasing slope 
with increasing spatial scale. (d) When biomass production was calculated as biomass per m2 from randomly subsampled subplots of the BCI 
50-hectare plot, we found that the slope of the species richness–biomass production relationship decreased with increasing spatial scale  
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per m2 relationship decreases with increasing sampling extent. The 
biomass per unit area (i.e. m2 or ha) approach is the typical method 
of comparison in biodiversity–ecosystem functioning studies 
(e.g. Duffy et al., 2017; Isbell et al., 2011; Reich et al., 2001, 2012; 
Roscher et al., 2004; Spehn et al., 2005). Scaling theory in biodiver-
sity–ecosystem functioning research, however, relies almost entirely 
on the assumption that ecosystem functioning at larger spatial scales 
is the sum of ecosystem functioning at smaller scales (see Gonzalez 
et al., 2020 for a recent summary of this literature). This apparent 
contradiction between measurements in experiments and scaling 
theory means that predictions from scaling theory are expressed 
at a different scale from results as published from biodiversity–​
ecosystem functioning experiments. Enabling comparison between 
theory as it is published and experimental data as it is published, 
however, is simple. To compare currently published theoretical pre-
dictions with experimental results, experimental results could be 
multiplied by the sampling area or theoretical results divided by area 
to ensure that predictions are expressed at the same scale.

4.2 | Applying macroecological predictions from 
local to global scales

A critical conclusion from our findings is that we can use macro-
ecological patterns to accurately predict the scaling of the species 
richness–biomass production relationship at local spatial scales. 
However, the local to global scale species–area curve (both log-
transformed) is likely triphasic following a power law. As the area 
considered expands, the rate of increase in species richness slows 
at local scales (as seen here). At regional scales, species richness 
increases approximately linearly with increasing area. At land-
scape to global scales, species richness increases at an acceler-
ating rate with increasing area (Lomolino,  2001; Preston,  1960; 
Rosenzweig,  1995). Given this underlying macroecological pat-
tern, we expect that the species richness–biomass relationship 
will also change as we move from local to global scales (when 
both species richness and biomass are log-transformed, Figure 6, 
see also (Thompson et al., 2018). In terms of biomass production 
(Figure 6a), we expect that, as area increases, the slope of the re-
lationship between species richness and biomass will increase lo-
cally, stay the same regionally and decrease globally. Importantly, 
this global slope will not decrease below the slope of the highest 
local slope (Figure 6b). That is, if species richness contributes to bi-
omass production, each additional species will contribute propor-
tionally the most to biomass production at regional scales and the 
least at the smallest local scale. Alternatively, in terms of biomass 
production per unit area, we expect that the species–area curve 
will change nonlinearly from local to global scales and the biomass 
production per unit area will be invariant to scale (Figure 6c). In 
this case, the slope of the relationship between species richness 
and biomass production will decline as area increases (Figure 6d).

The general scaling relationship found here can also be extended 
for any other analysis that combines a nonlinear relationship with 

F I G U R E  6   Graphical predictions for how the log(species 
richness)–log(biomass production) relationship will scale with 
increasing log(area) from local to regional and global scales 
depending on the way in which biomass production is calculated. 
(a) In log space, the species–area curve is thought to be triphasic 
as log(area) increases from local to regional and then global scales 
(black curve). The log-transformed total biomass production 
likely monotonically increases with increasing spatial scale 
(grey line). (b) The slope of the log(species richness)-log(biomass 
production) relationship increases with increasing spatial scale 
at local to the regional scales, does not change at regional scales 
and decreases slightly at global scales. This would indicate that 
the exponents of the non-log-transformed relationships increase 
with increasing spatial scale. (c) In log space, the species–area 
curve is triphasic (black line). Log-transformed biomass per unit 
area (e.g. per m2 or per ha) is invariant to area. (d) The slope of 
the log(species richness)–log(biomass production) relationship 
decreases with increasing area at local, regional and global scales. 
This would indicate that the exponents of the non-log-transformed 
relationships decrease with increasing spatial scale



     |  1557Journal of EcologyBARRY et al.

a linear relationship. For example, the species richness–time rela-
tionship, while less well studied than the species–area relationship 
is also nonlinear (Adler & Lauenroth,  2003; Preston,  1960; White 
et  al.,  2006). If we assume that biomass production per unit area 
remains relatively constant over time in an equilibrium community, 
then we predict that the slope of the species richness–biomass rela-
tionship will decrease with increasing time and each additional spe-
cies will be less important for biomass production per unit area with 
increasing time (Figure S2a,b).

4.3 | Experiments versus naturally assembled  
systems

We report here a mathematical outcome of combining the species–
area curve and biomass–area curve. While mathematically simple, 
this outcome is useful for scaling biodiversity–ecosystem function-
ing relationships. Importantly, this outcome does not imply causality. 
That is biodiversity need not cause enhanced ecosystem functioning 
in naturally assembled systems for this scaling to be valid. This math-
ematical scaling addresses one aspect of the type of scaling nec-
essary to apply findings from biodiversity–ecosystem functioning 
experiments to naturally assembled systems—going from small area 
plots to larger areas. However, examining the underlying macroeco-
logical patterns may also highlight how experiments may operate 
under different assumptions from naturally assembled systems and 
therefore inform the second type of scaling required—going from ex-
periment to naturally assembled system at the same spatial extent. 
These differing underlying macroecological patterns may enable us 
to understand when results from biodiversity–ecosystem function-
ing experiments are likely to be most applicable to naturally assem-
bled systems at the same spatial extent.

While the underlying macroecological patterns of biodiversity 
experiments may differ from naturally assembled systems in many 
ways, one important way is how biodiversity and biomass are likely 
to change through time (Reich et al., 2012). These differences in the 
underlying changes in biomass and biodiversity through time likely 
result in contrasting patterns in biodiversity–ecosystem function-
ing relationships through time. If we view biodiversity experiments 
through time, biomass per m2 often increases on average (e.g. Reich 
et  al.,  2012; Weisser et  al.,  2017), Figure  2c). Furthermore, initial 
planted species richness is often reported in publications from biodi-
versity experiments rather than realized species richness (e.g. Reich 
et al., 2012; Weisser et al., 2017). This initial species richness is con-
stant over time. If species richness remains constant (or decreases) 
through time and biomass per unit area increases, then the slope of 
the relationship between the two will increase with increasing time, 
as found by Reich et al. (2012, Figure S2d). Alternatively, in naturally 
assembled systems at the same spatial extent that are not under-
going succession, the general expectation is that biomass remains 
constant while species richness increases nonlinearly (the species–
time relationship, Adler & Lauenroth,  2003; Preston,  1960; White 
et  al.,  2006). If biomass remains constant while species richness 

increases nonlinearly, then we predict that over time each additional 
species will contribute less to biomass production. In biodiversity ex-
periments, we expect the opposite (Figure S2a,b).

Understanding these underlying changes may help us better 
apply biodiversity ecosystem functioning research to naturally as-
sembled communities where biodiversity–ecosystem functioning 
relationships are more varied and often negative (van der Plas, 2019). 
However, biodiversity change in naturally assembled systems differs 
from the biodiversity change mimicked by experiments in two crucial 
ways. First, biodiversity loss when it occurs in naturally assembled 
systems is non-random (Chen et al., 2020; Isbell et al., 2008). Rather, 
specific functional groups may be more or less prone to local extinc-
tions than others (Harpole et al., 2016; Isbell et al., 2008; Komatsu 
et al., 2019; McDowell et al., 2020; Suding et al., 2005). The conse-
quences of this non-random loss may be entirely different than the 
consequences of random loss. Second, species additions often off-
set local extinctions (Bannar-Martin et al., 2018; Blowes et al., 2019) 
and thus consistent net loss may be an unrealistic expectation in nat-
urally assembled systems at local and regional spatial scales. More 
likely, communities will change in composition with some species 
increasing or decreasing in abundance and no concomitant changes 
to the identities of the species present (Leibold et al., 2017). These 
changes in abundance likely also have different effects on ecosys-
tem functioning that are not predicted here. In fact, our goal here 
is to offer a framework for making null predictions about changes in 
biodiversity–ecosystem functioning expectations with scale.

When actual patterns deviate from these expectations, this of-
fers an opportunity to explore the ecological mechanisms at play 
(e.g. biotic homogenization, species dispersing into habitats for 
which they are well suited, changes in species composition). For ex-
ample, if biodiversity loss continues at the global scale while biotic 
homogenization continues to play out at regional spatial scales, then 
we expect that the species–area curve will begin to saturate rather 
than increase at global scales. If this happens then we predict that 
the importance of species richness for ecosystem functioning will 
decrease with increasing spatial scale.

5  | CONCLUSIONS

How biodiversity–ecosystem functioning relationships vary with in-
creasing spatial and temporal scale has critical implications for how 
biodiversity is managed to provide ecosystem services. Current con-
servation, restoration and valuation efforts depend on our ability to 
scale from local experimental evidence to larger regional and even 
global scales (Isbell et  al.,  2017; Naidoo et  al.,  2008). The current 
capacity for upscaling is limited (Bockstael et al., 2000). Upscaling 
the local scale knowledge of diversity–productivity relationships 
to larger scales relevant to management is challenging because hu-
man-induced diversity changes represent a large variety of types of 
changes in addition to changes in species richness.

Our results reveal the mathematical inevitabilities of how  
biodiversity–ecosystem functioning relationships vary with sampling 
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extent. For any ecosystem function that scales linearly with increas-
ing area, the contribution of each additional species must increase 
with increasing sampling extent due to the nonlinear species–area 
relationship if there is a positive relationship between species rich-
ness and that ecosystem function. Furthermore, all measures of 
biodiversity and all measures of ecosystem functioning have indi-
vidual relationships with space and time. The shape of these under-
lying macroecological relationships will determine how they scale. 
Understanding these underlying scaling relationships may allow us 
to make generalizable predictions for the consequences of species 
loss on any well-supported biodiversity–ecosystem functioning re-
lationship at global scales. Additionally, understanding how the units 
of the measures that we use alter relationships with scale enables 
us to make better predictions. Many management-relevant func-
tions and services like net primary production and harvestable bole 
volume are used by managers in per unit area/volume or per unit 
time terms. This simple standardization which allows comparison 
between management units also reverses our expectations for how 
these functions change across spatial scale. Finally, applying this 
simple mathematical scaling framework may enable us to focus more 
precisely on the mechanisms that may cause these relationships to 
diverge from our theoretical expectations.
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