6,837 research outputs found

    Radio emission of SN1993J. The complete picture: II. Simultaneous fit of expansion and radio light curves

    Full text link
    We report on a simultaneous modelling of the expansion and radio light curves of SN1993J. We have developed a simulation code capable of generating synthetic expansion and radio light curves of supernovae by taking into consideration the evolution of the expanding shock, magnetic fields, and relativistic electrons, as well as the finite sensitivity of the interferometric arrays used in the observations. Our software successfully fits all the available radio data of SN 1993J with an standard emission model for supernovae extended with some physical considerations, as an evolution in the opacity of the ejecta material, a radial drop of the magnetic fields inside the radiating region, and a changing radial density profile of the circumstellar medium beyond day 3100 after explosion.Comment: 12 pages, 12 figures, accepted for publication in A&

    Serendipitous discovery of the long-sought AGN in Arp 299-A

    Full text link
    Context: The dusty nuclear regions of luminous infra-red galaxies (LIRGs) are heated by either an intense burst of massive star formation, an active galactic nucleus (AGN), or a combination of both. Disentangling the contribution of each of those putative dust-heating agents is a challenging task, and direct imaging of the innermost few pc can only be accomplished at radio wavelengths, using very high-angular resolution observations. Aims: We observed the nucleus A of the interacting starburst galaxy Arp 299, using very long baseline interferometry (VLBI) radio observations at 1.7 and 5.0 GHz. Our aim was to characterize the compact sources in the innermost few pc region of Arp 299-A, as well as to detect recently exploded core-collapse supernovae. Methods: We used the European VLBI Network (EVN) to image the 1.7 and 5.0 GHz compact radio emission of the parsec-scale structure in the nucleus of Arp 299-A with milliarcsecond resolution. Results: Our EVN observations show that one of the compact VLBI sources, A1, previously detected at 5.0 GHz, has a flat spectrum between 1.7 and 5.0 GHz and is the brightest source at both frequencies. Our 1.7 GHz EVN image shows also diffuse, low-surface brightness emission extending westwards from A1 and displays a prominent core-jet structure. Conclusions: The morphology, radio luminosity, spectral index and ratio of radio-to-X-ray emission of the A1-A5 region is consistent with a low-luminosity AGN (LLAGN), and rules out the possibility that it is a chain of young radio supernovae (RSNe) and supernova remnants (SNRs). We therefore conclude that A1-A5 is the long-sought AGN in Arp 299-A. This finding may suggest that both starburst and AGN are frequently associated phenomena in mergers.Comment: Accepted for publication in Letters to Astronomy and Astrophysics on 12 August 2010. 4 pages, 1 figur

    Ultrasensitive interferometric on-chip microscopy of transparent objects

    Get PDF
    Light microscopes can detect objects through several physical processes, such as scattering, absorption, and reflection. In transparent objects, these mechanisms are often too weak, and interference effects are more suitable to observe the tiny refractive index variations that produce phase shifts. We propose an on-chip microscope design that exploits birefringence in an unconventional geometry. It makes use of two sheared and quasi-overlapped illuminating beams experiencing relative phase shifts when going through the object, and a complementary metal-oxide-semiconductor image sensor array to record the resulting interference pattern. Unlike conventional microscopes, the beams are unfocused, leading to a very large field of view (20 mm(2)) and detection volume (more than 0.5 cm(3)), at the expense of lateral resolution. The high axial sensitivity (<1 nm) achieved using a novel phase-shifting interferometric operation makes the proposed device ideal for examining transparent substrates and reading microarrays of biomarkers. This is demonstrated by detecting nanometer-thick surface modulations on glass and single and double protein layers.Peer ReviewedPostprint (published version

    A Typed Model for Dynamic Authorizations

    Get PDF
    Security requirements in distributed software systems are inherently dynamic. In the case of authorization policies, resources are meant to be accessed only by authorized parties, but the authorization to access a resource may be dynamically granted/yielded. We describe ongoing work on a model for specifying communication and dynamic authorization handling. We build upon the pi-calculus so as to enrich communication-based systems with authorization specification and delegation; here authorizations regard channel usage and delegation refers to the act of yielding an authorization to another party. Our model includes: (i) a novel scoping construct for authorization, which allows to specify authorization boundaries, and (ii) communication primitives for authorizations, which allow to pass around authorizations to act on a given channel. An authorization error may consist in, e.g., performing an action along a name which is not under an appropriate authorization scope. We introduce a typing discipline that ensures that processes never reduce to authorization errors, even when authorizations are dynamically delegated.Comment: In Proceedings PLACES 2015, arXiv:1602.0325

    Dynamic Role Authorization in Multiparty Conversations

    Get PDF
    Protocol specifications often identify the roles involved in communications. In multiparty protocols that involve task delegation it is often useful to consider settings in which different sites may act on behalf of a single role. It is then crucial to control the roles that the different parties are authorized to represent, including the case in which role authorizations are determined only at runtime. Building on previous work on conversation types with flexible role assignment, here we report initial results on a typed framework for the analysis of multiparty communications with dynamic role authorization and delegation. In the underlying process model, communication prefixes are annotated with role authorizations and authorizations can be passed around. We extend the conversation type system so as to statically distinguish processes that never incur in authorization errors. The proposed static discipline guarantees that processes are always authorized to communicate on behalf of an intended role, also covering the case in which authorizations are dynamically passed around in messages.Comment: In Proceedings BEAT 2014, arXiv:1408.556

    Absolute kinematics of radio source components in the complete S5 polar cap sample. III. First wide-field high-precision astrometry at 15.4 GHz

    Get PDF
    We report on the first wide-field, high-precision astrometric analysis of the 13 extragalactic radio sources of the complete S5 polar cap sample at 15.4 GHz. We describe new algorithms developed to enable the use of differenced phase delays in wide-field astrometric observations and discuss the impact of using differenced phase delays on the precision of the wide-field astrometric analysis. From this global fit, we obtained estimates of the relative source positions with precisions ranging from 14 to 200 μ\muas at 15.4 GHz, depending on the angular separation of the sources (from \sim1.6 to \sim20.8 degrees). These precisions are \sim10 times higher than the achievable precisions using the phase-reference mapping technique.Comment: 9 pages, 7 figure

    The Core-Collapse Supernova Rate in Arp299 Revisited

    Full text link
    We present a study of the CCSN rate in nuclei A and B1 of the luminous infrared galaxy Arp299, based on 11 years of Very Large Array monitoring of their radio emission at 8.4 GHz. Significant variations in the nuclear radio flux density can be used to identify the CCSN activity in the absence of high-resolution very long baseline interferometry observations. In the case of the B1-nucleus, the small variations in its measured diffuse radio emission are below the fluxes expected from radio supernovae, thus making it well-suited to detect RSNe through flux density variability. In fact, we find strong evidence for at least three RSNe this way, which results in a lower limit for the CCSN rate of 0.28 +/- 0.16 per year. In the A-nucleus, we did not detect any significant variability and found a SN detection threshold luminosity which allows only the detection of the most luminous RSNe known. Our method is basically blind to normal CCSN explosions occurring within the A-nucleus, which result in too small variations in the nuclear flux density, remaining diluted by the strong diffuse emission of the nucleus itself. Additionally, we have attempted to find near-infrared counterparts for the earlier reported RSNe in the Arp299 nucleus A, by comparing NIR adaptive optics images from the Gemini-N telescope with contemporaneous observations from the European VLBI Network. However, we were not able to detect NIR counterparts for the reported radio SNe within the innermost regions of nucleus A. While our NIR observations were sensitive to typical CCSNe at 300 mas from the centre of the nucleus A, suffering from extinction up to A_v~15 mag, they were not sensitive to such highly obscured SNe within the innermost nuclear regions where most of the EVN sources were detected. (abridged)Comment: 12 pages, 4 figures and 7 tables. Accepted for publication in MNRA
    corecore