140 research outputs found

    Temperature dependent photoemission on 1T-TiSe2: Interpretation within the exciton condensate phase model

    Get PDF
    The charge density wave phase transition of 1T-TiSe2 is studied by angle-resolved photoemission over a wide temperature range. An important chemical potential shift which strongly evolves with temperature is evidenced. In the framework of the exciton condensate phase, the detailed temperature dependence of the associated order parameter is extracted. Having a mean-field-like behaviour at low temperature, it exhibits a non-zero value above the transition, interpreted as the signature of strong excitonic fluctuations, reminiscent of the pseudo-gap phase of high temperature superconductors. Integrated intensity around the Fermi level is found to display a trend similar to the measured resistivity and is discussed within the model.Comment: 8 pages, 6 figure

    An Alternative Interpretation of Recent ARPES Measurements on TiSe2

    Full text link
    Recently there has been a renewed interest in the charge density wave transition of TiSe2, fuelled by the possibility that this transition may be driven by the formation of an excitonic insulator or even an excitonic condensate. We show here that the recent ARPES measurements on TiSe2 can also be interpreted in terms of an alternative scenario, in which the transition is due to a combination of Jahn-Teller effects and exciton formation. The hybrid exciton-phonons which cause the CDW formation interpolate between a purely structural and a purely electronic type of transition. Above the transition temperature, the electron-phonon coupling becomes ineffective but a finite mean-field density of excitons remains and gives rise to the observed diffuse ARPES signals.Comment: 4 pages, 2 figure

    Why do dogs (Canis familiaris) select the empty container in an observational learning task?

    Get PDF
    Many argue that dogs show unique susceptibility to human communicative signals that make them suitable for being engaged in complex co-operation with humans. It has also been revealed that socially provided information is particularly effective in influencing the behaviour of dogs even when the human’s action demonstration conveys inefficient or mistaken solution of task. It is unclear, however, how the communicative nature of the demonstration context and the presence of the human demonstrator affect the dogs’ object-choice behaviour in observational learning situations. In order to unfold the effects of these factors, 76 adult pet dogs could observe a communicative or a non-communicative demonstration in which the human retrieved a tennis ball from under an opaque container while manipulating another distant and obviously empty (transparent) one. Subjects were then allowed to choose either in the presence of the demonstrator or after she left the room. Results showed a significant main effect of the demonstration context (presence or absence of the human’s communicative signals), and we also found some evidence for the response-modifying effect of the presence of the human demonstrator during the dogs’ choice. That is, dogs predominantly chose the baited container, but if the demonstration context was communicative and the human was present during the dogs’ choice, subjects’ tendency to select the baited container has been reduced. In agreement with the studies showing sensitivity to human’s communicative signals in dogs, these findings point to a special form of social influence in observational learning situations when it comes to learning about causally opaque and less efficient (compared to what comes natural to the dog) action demonstrations

    Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms

    Get PDF
    International audienceEarth, as a whole, can be considered as a living organism emitting gases and particles into its atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change by emitting particles that ultimately will inïŹ‚uence cloud coverage. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We identify iodine-containing species as major precursors for new particle clusters’ formation, while questioning the role of the commonly accepted dimethyl sulïŹde oxidation products, in forming new particle clusters in the region investigated and within a time scale on the order of an hour. We further show that amines would sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest that iodine-containing species and amines are correlated to different biological tracers. These observations, if generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions

    Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2_2Te4_4

    Get PDF
    Modification of the gap at the Dirac point (DP) in antiferromagnetic (AFM) axion topological insulator MnBi2_2Te4_4 and its electronic and spin structure has been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation with variation of temperature (9-35~K), light polarization and photon energy. We have distinguished both a large (62-67~meV) and a reduced (15-18~meV) gap at the DP in the ARPES dispersions, which remains open above the N\'eel temperature (TN=24.5T_\mathrm{N}=24.5~K). We propose that the gap above TNT_\mathrm{N} remains open due to short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for large-gap sample and significantly reduced effective magnetic moment for the reduced-gap sample. These effects can be associated with a shift of the topological DC state towards the second Mn layer due to structural defects and mechanical disturbance, where it is influenced by a compensated effect of opposite magnetic moments

    Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4A

    Get PDF
    Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator MnBi2Te4 and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced (< 20 meV) gaps at the DP in the ARPES dispersions, which remain open above the Neel temperature (T-N = 24.5 K). We propose that the gap above T-N remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.The authors acknowledge support by the Saint Petersburg State University (Grant No. 51126254), Russian Science Foundation (Grant No. 18-12-00062 in part of the photoemission measurements and Grant No. 18-12-00169 in part of the electronic band structure calculations) and by Russian Foundation of Basic Researches (Grants Nos. 18-52-06009 and 20-32-70179) and Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EI F-BGM-4-RFTF1/2017-21/04/1-M-02). A. Kimura was financially supported by KAKENHI (Grants No. 17H06138, No. 17H06152, and No. 18H03683). S.V.E. and E.V.C. acknowledge support by the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9). The authors kindly acknowledge the HiSOR staff and A. Harasawa at ISSP for technical support and help with the experiment. The ARPES measurements at HiSOR were performed with the approval of the Proposal Assessing Committee (Proposal Numbers: 18BG027 and 19AG048). XAS and XMCD measurements were performed at BL23SU of SPring-8 (Proposal Nos. 2018A3842 and 2018B3842) under the Shared Use Program of JAEA Facilities (Proposal Nos. 2018A-E25 and 2018B-E24) with the approval of Nanotechnology Platform project supported by MEXT, Japan (Proposal Nos. A-18-AE-0020 and A-18-AE-0042). M. M. Otrokov acknowledges the support by Spanish Ministerio de Ciencia e Innovacion (Grant no. PID2019-103910GB-I00). K. Yaji was financially supported by KAKENHI (Grants No. 18K03484)

    Is It Rational to Assume that Infants Imitate Rationally? A Theoretical Analysis and Critique

    Get PDF
    It has been suggested that preverbal infants evaluate the efficiency of others' actions (by applying a principle of rational action) and that they imitate others' actions rationally. The present contribution presents a conceptual analysis of the claim that preverbal infants imitate rationally. It shows that this ability rests on at least three assumptions: that infants are able to perceive others' action capabilities, that infants reason about and conceptually represent their own bodies, and that infants are able to think counterfactually. It is argued that none of these three abilities is in place during infancy. Furthermore, it is shown that the idea of a principle of rational action suffers from two fallacies. As a consequence, is it suggested that it is not rational to assume that infants imitate rationally. Copyright (C) 2012 S. Karger AG, Base
    • 

    corecore