169 research outputs found

    Alteration of pathogenicity-linked life-history traits by resistance of its host Solanum tuberosum impacts sexual reproduction of the plant pathogenic oomycete Phytophthora infestans.

    No full text
    International audienceAlthough sexual reproduction implies a cost, it represents an evolutionary advantage for the adaptation and survival of facultative sexual pathogens. Understanding the maintenance of sex in pathogens requires to analyse how host resistance will impact their sexual reproduction through the alteration of their life-history traits. We explored this experimentally using potato (Solanum tuberosum) and one of its pathogens, the heterothallic oomycete Phytophthora infestans. Sexual reproduction was highest on hosts favouring asexual multiplication of the pathogen, suggesting similar nutritional requirements for both sexual and asexual sporulation. Sexual reproduction was also highest on hosts decreasing the latent period, probably because of a trade-off between growth and reproduction. Distinguishing host effects on each pathogenic trait remains however uneasy, as most life-history traits linked to pathogenicity were not independent of each other. We argue that sexual reproduction of P. infestans is an adaptation to survive when the host is susceptible and rapidly destroyed

    The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models – a European perspective

    Get PDF
    We compare Holocene tree cover changes in Europe derived from a transient Earth system model simulation (Max Planck Institute Earth System Model – MPI-ESM1.2, including the land surface and dynamic vegetation model JSBACH) with high-spatial-resolution time slice simulations performed in the dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator) and pollen-based quantitative reconstructions of tree cover based on the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models, indicating much earlier anthropogenic deforestation than the prescribed land use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model–data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid for past climate and vegetation states totally different from today's. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present-day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for paleo-simulations and complicate model–data comparisons with additional challenges. Moreover, our study suggests that land use is the main driver of forest decline in Europe during the mid-Holocene and late Holocene.</p

    Modeling past human-induced vegetation change is a challenge – the case of Europe

    Get PDF
    Differences between pollen-based reconstructions and dynamic vegetation simulations of past vegetation change in Europe over the last seven millennia are interpreted as being due primarily to land-use change. Incorporating land use in climate and dynamic vegetation models requires new approaches

    Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?

    Get PDF
    International audienceThe 58–51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 • C) up to the Early Eocene Climate Optimum (EECO, 52.9– 50.7 Ma), the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO 2 , controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO 2 at arc volcanoes. To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have mod-eled the volume of subducted sediments and the amount of CO 2 emitted along the northern Tethys margin. The impact of calculated CO 2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM). We show that CO 2 production may have reached up to 1.55 × 10 18 mol Ma −1 specifically during the EECO, ∼ 4 to 37 % higher that the modern global volcanic CO 2 output, owing to a dramatic India-Asia plate convergence increase. The subduction of thick Greater Indian continental margin carbonate sediments at ∼ 55–50 Ma may also have led to additional CO 2 production of 3.35 × 10 18 mol Ma −1 during the EECO, making a total of 85 % of the global volcanic CO 2 outgassed. However , climate modeling demonstrates that timing of maximum CO 2 release only partially fits with the EECO, and that corresponding maximum pCO 2 values (750 ppm) and surface warming (+2 • C) do not reach values inferred from geo-chemical proxies, a result consistent with conclusions arising from modeling based on other published CO 2 fluxes. These results demonstrate that CO 2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming. Other commonly cited sources of excess CO 2 such as enhanced igneous province volcanism also appear to be up to 1 order of magnitude below fluxes required by the model to fit with proxy data of pCO 2 and temperature at that time. An alternate explanation may be that CO 2 consumption, a key parameter of the long-term atmospheric pCO 2 balance, may have been lower than suggested by modeling. These results call for a better calibration of early Cenozoic weathering rates

    Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism

    Get PDF
    Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann–Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer

    Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya

    Get PDF
    Geochemical and geochronological analyses provide quantitative evidence about the origin, development and motion along ductile faults, where kinematic structures have been overprinted. The Main Central Thrust is a key structure in the Himalaya that accommodated substantial amounts of the India–Asia convergence. This structure juxtaposes two isotopically distinct rock packages across a zone of ductile deformation. Structural analysis, whole-rock Nd isotopes, and U–Pb zircon geochronology reveal that the hanging wall is characterized by detrital zircon peaks at c. 800–1000 Ma, 1500–1700 Ma and 2300–2500 Ma and an εNd(0) signature of –18.3 to –12.1, and is intruded by c. 800 Ma and c. 500–600 Ma granites. In contrast, the footwall has a prominent detrital zircon peak at c. 1800–1900 Ma, with older populations spanning 1900–3600 Ma, and an εNd(0) signature of –27.7 to –23.4, intruded by c. 1830 Ma granites. The data reveal a c. 5 km thick zone of tectonic imbrication, where isotopically out-of-sequence packages are interleaved. The rocks became imbricated as the once proximal and distal rocks of the Indian margin were juxtaposed by Cenozoic movement along the Main Central Thrust. Geochronological and isotopic characterization allows for correlation along the Himalayan orogen and could be applied to other cryptic ductile shear zones

    Europe's lost forests: a pollen-based synthesis for the last 11,000 years

    Get PDF
    8000 years ago, prior to Neolithic agriculture, Europe was mostly a wooded continent. Since then, its forest cover has been progressively fragmented, so that today it covers less than half of Europe’s land area, in many cases having been cleared to make way for fields and pasture-land. Establishing the origin of Europe’s current, more open land-cover mosaic requires a long-term perspective, for which pollen analysis offers a key tool. In this study we utilise and compare three numerical approaches to transforming pollen data into past forest cover, drawing on >1000 14C-dated site records. All reconstructions highlight the different histories of the mixed temperate and the northern boreal forests, with the former declining progressively since ~6000 years ago, linked to forest clearance for agriculture in later prehistory (especially in northwest Europe) and early historic times (e.g. in north central Europe). In contrast, extensive human impact on the needle-leaf forests of northern Europe only becomes detectable in the last two millennia and has left a larger area of forest in place. Forest loss has been a dominant feature of Europe’s landscape ecology in the second half of the current interglacial, with consequences for carbon cycling, ecosystem functioning and biodiversity
    • …
    corecore