65 research outputs found

    The Afrotropical breeding grounds of the Palearctic-African migratory painted lady butterflies (Vanessa cardui)

    Get PDF
    Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.This work was funded by the National Geographic Society (grant WW1-300R-18); by the British Ecological Society (grant LRB16/1015); by the Research and Conservation Projects of the Fundació Barcelona Zoo; by the grant PID2020-117739GA-I00/MCIN/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation and the Spanish State Research Agency to G.T.; by the grant LINKA20399 from the Spanish National Research Council iLink program to G.T., C.P.B., N.E.P., and R.V.; by fellowship FPU19/01593 of the program Formación de Profesorado Universitario (FPU) to A.G.-B.; by the Turkana Basin Institute, National Geographic Society, and Whitley Fund for Nature to D.J.M.; and by grant 2018-00738 of the New Frontiers in Research Fund (Government of Canada) to G.T. and C.P.B.Significance Abstract Results Field Surveys, Larval Hostplants, and Field-Based Model Validation Monitoring Results and Population Dynamics across Regions A Refined Model for the Afrotropical Region Discussion The Afrotropical Breeding Grounds of V. cardui: Multiple Generations Shift South Toward the Tropics Diversity and Phenology of Larval Hostplants in the Afrotropics The Ecological Relevance of Delimiting Spatiotemporal Distributions in Migratory Insects Conclusion Methods December-January Field Surveys and Year-Round Monitoring Spatiotemporal Ecological Niche Modeling Data, Materials, and Software Availability Acknowledgments Supporting Information Reference

    Biallelic GRM7 variants cause epilepsy, microcephaly, and cerebral atrophy

    Get PDF
    Objective: Defects in ion channels and neurotransmitter receptors are implicated in developmental and epileptic encephalopathy (DEE). Metabotropic glutamate receptor 7 (mGluR7), encoded by GRM7, is a presynaptic G-protein-coupled glutamate receptor critical for synaptic transmission. We previously proposed GRM7 as a candidate disease gene in two families with neurodevelopmental disorders (NDDs). One additional family has been published since. Here, we describe three additional families with GRM7 biallelic variants and deeply characterize the associated clinical neurological and electrophysiological phenotype and molecular data in 11 affected individuals from six unrelated families. Methods: Exome sequencing and family-based rare variant analyses on a cohort of 220 consanguineous families with NDDs revealed three families with GRM7 biallelic variants; three additional families were identified through literature search and collaboration with a clinical molecular laboratory. Results: We compared the observed clinical features and variants of 11 affected individuals from the six unrelated families. Identified novel deleterious variants included two homozygous missense variants (c.2671G>A:p.Glu891Lys and c.1973G>A:p.Arg685Gln) and one homozygous stop-gain variant (c.1975C>T:p.Arg659Ter). Developmental delay, neonatal- or infantile-onset epilepsy, and microcephaly were universal. Three individuals had hypothalamic–pituitary–axis dysfunction without pituitary structural abnormality. Neuroimaging showed cerebral atrophy and hypomyelination in a majority of cases. Two siblings demonstrated progressive loss of myelination by 2 years in both and an acquired microcephaly pattern in one. Five individuals died in early or late childhood. Conclusion: Detailed clinical characterization of 11 individuals from six unrelated families demonstrates that rare biallelic GRM7 pathogenic variants can cause DEEs, microcephaly, hypomyelination, and cerebral atrophy. © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association

    The Arab world's contribution to solid waste literature: a bibliometric analysis

    Get PDF
    BACKGROUND: Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. METHODS: We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. RESULTS: A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982–2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. CONCLUSIONS: Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects

    Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process

    Full text link
    This paper assesses the use of alkali activation technology in the valorization of a spent fluid catalytic cracking (FCC) catalyst, which is a residue derived from the oil-cracking process, to produce geopolymer binders. In particular, the effects of activation conditions on the structural characteristics of the spent catalyst- based geopolymers are determined. The zeolitic phases present in the spent catalyst are the main phases participating in the geopolymerization reaction, which is driven by the conversion of the zeolitic material to a highly Al-substituted aluminosilicate binder gel. Higher alkali content and SiO2/Na2O ratio lead to a denser structure with a higher degree of geopolymer gel formation and increased degree of crosslinking, as identified through 29Si MAS NMR. These results highlight the feasibility of using spent FCC catalyst as a precursor for geopolymer production.This study was sponsored by research scholarship BES-2008-002440 and EEBB-2011-43847 from the Ministerio de Ciencia y Tecnologia of Spain, the European regional development fund (FEDER), and the Universitat Politecnica de Valencia (Spain). The participation of SAB and JLP was funded by the Australian Research Council through the Discovery Projects program, and also including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC. The authors wish to acknowledge the Advanced Microscopy Facility at The University of Melbourne for assistance with the electron microscopy experiments conducted in this study.Rodriguez Martinez, ED.; Bernal, SA.; Provis, JL.; Gehman, JD.; Monzó Balbuena, JM.; Paya Bernabeu, JJ.; Borrachero Rosado, MV. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109:493-502. https://doi.org/10.1016/j.fuel.2013.02.053S49350210

    MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia

    Get PDF
    The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021Peer reviewe

    Haploinsufficiency of ARFGEF1 is associated with developmental delay, intellectual disability, and epilepsy with variable expressivity

    Get PDF
    ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy

    Clinical and molecular characterization of patients with YWHAG‐related epilepsy

    Get PDF
    Objective YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. Methods We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. Results The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype–phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). Significance This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype–phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling

    Biallelic variants in the ectonucleotidase ENTPD1 cause a complex neurodevelopmental disorder with intellectual disability, distinct white matter abnormalities, and spastic paraplegia.

    Get PDF
    OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia (HSP) is associated with over 80 genes with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (MIM# 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterizations were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described: c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs* 18), c.640del; p.(Gly216Glufs* 75), c.185T>G; p.(Leu62*), c.1531T>C; p.(*511Glnext* 100), c.967C>T; p.(Gln323*), c.414-2_414-1del, and c.146 A>G; p.(Tyr49Cys) including four recurrent variants c.1109T>A; p.(Leu370* ), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include: childhood-onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrates ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease-onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1: i) expands previously described features of ENTPD1-related neurological disease, ii) highlights the importance of genotype-driven deep phenotyping, iii) documents the need for global collaborative efforts to characterize rare AR disease traits, and iv) provides insights into the disease trait neurobiology. This article is protected by copyright. All rights reserved
    corecore