681 research outputs found
On the occurrence and motion of decametre-scale irregularities in the sub-auroral, auroral, and polar cap ionosphere
International audienceThe statistical occurrence of decametre-scale ionospheric irregularities, average line-of-sight (LOS) Doppler velocity, and Doppler spectral width in the sub-auroral, auroral, and polar cap ionosphere ( - 57°L to - 88°L) has been investigated using echoes recorded with the Tasman International Geospace Environment Radar (TIGER), a SuperDARN radar located on Bruny Island, Tasmania (147.2° E, 43.4° S geographic; - 54.6 °L). Results are shown for routine soundings made on the magnetic meridian beam 4 and the near zonal beam 15 during the sunspot maximum interval December 1999 to November 2000. Most echoes were observed in the nightside ionosphere, typically via 1.5-hop propagation near dusk and then via 0.5-hop propagation during pre-midnight to dawn. Peak occurrence rates on beam 4 were often > 60% near magnetic midnight and ~ - 70 °L. They increased and shifted equatorward and toward pre-midnight with increasing Kp (i.e. Bz southward). The occurrence rates remained very high for Kp > 4, de-spite enhanced D-region absorption due to particle precipitation. Average occurrence rates on beam 4 exhibited a relatively weak seasonal variation, consistent with known longitudinal variations in auroral zone magnetic activity (Basu, 1975). The average echo power was greatest between 23 and 07 MLT. Two populations of echoes were identified on both beams, those with low spectral width and a mode value of ~ 9 ms-1 (bin size of 2 ms-1) concentrated in the auroral and sub-auroral ionosphere (population A), and those with high spectral width and a mode value of ~ 70 ms-1 concentrated in the polar cap ionosphere (population B). The occurrence of population A echoes maximised post-midnight because of TIGER's lower latitude, but the subset of the population A echoes observed near dusk had characteristics reminiscent of "dusk scatter" (Ruohoniemi et al., 1988). There was a dusk "bite out" of large spectral widths between ~ 15 and 21 MLT and poleward of - 67 °L, and a pre-dawn enhancement of large spectral widths between ~ 03 and 07 MLT, centred on ~ - 61 °L. The average LOS Doppler velocities revealed that frequent westward jets of plasma flow occurred equatorward of, but overlapping, the diffuse auroral oval in the pre-midnight sector
The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control
In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions
Report of the panel on the land surface: Process of change, section 5
The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface
Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis
Restoration aims to return ecosystem services, including the human health benefits of exposure to green space. The loss of such exposure with urbanization and industrialization has arguably contributed to an increase in human immune dysregulation. The Biodiversity and Old Friends hypotheses have described the possible mechanisms of this relationship, and suggest that reduced exposure to diverse, beneficial microorganisms can result in negative health consequences. However, it is unclear whether restoration of biodiverse habitat can reverse this effect, and what role the environmental microbiome might have in such recovery. Here, we propose the Microbiome Rewilding Hypothesis, which specifically outlines that restoring biodiverse habitats in urban green spaces can rewild the environmental microbiome to a state that enhances primary prevention of human disease. We support our hypothesis with examples from allied fields, including a case study of active restoration that reversed the degradation of the soil bacterial microbiome of a former pasture. This case study used high-throughput amplicon sequencing of environmental DNA to assess the quality of a restoration intervention in restoring the soil bacterial microbiome. The method is rapid, scalable, and standardizable, and has great potential as a monitoring tool to assess functional outcomes of green-space restoration. Evidence for the Microbiome Rewilding Hypothesis will help motivate health professionals, urban planners, and restoration practitioners to collaborate and achieve co-benefits. Co-benefits include improved human health outcomes and investment opportunities for biodiversity conservation and restoration.Jacob G. Mills, Philip Weinstein, Nicholas J.C. Gellie, Laura S. Weyrich, Andrew J. Lowe, Martin F. Bree
Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis
Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. nondispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness.Irene Martín-Forés, Marta Avilés, Belén Acosta-Gallo, Martin F. Breed, Alejandro del Pozo, José M. de Miguel, Laura Sánchez-Jardón, Isabel Castro, Carlos Ovalle, Miguel A. Casad
Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management
This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses
Classical Correlation-Length Exponent in Non-Universal Quantum Phase Transition of Diluted Heisenberg Antiferromagnet
Critical behavior of the quantum phase transition of a site-diluted
Heisenberg antiferromagnet on a square lattice is investigated by means of the
quantum Monte Carlo simulation with the continuous-imaginary-time loop
algorithm. Although the staggered spin correlation function decays in a power
law with the exponent definitely depending on the spin size , the
correlation-length exponent is classical, i.e., . This implies that
the length scale characterizing the non-universal quantum phase transition is
nothing but the mean size of connected spin clusters.Comment: 4 pages, 3 figure
Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management
This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses
- …