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Critical behavior of the quantum phase transition of a site-diluted Heisenberg antiferromagnet on a square
lattice is investigated by means of the quantum Monte Carlo simulation with the continuous-imaginary-time
loop algorithm. Although the staggered spin-correlation function decays in a power law with the exponent
definitely depending on the spin sizeS, the correlation-length exponent is classical, i.e.,n54/3. This implies
that the length scale characterizing the nonuniversal quantum phase transition is nothing but the mean size of
connected spin clusters.
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Ground-state phase transitions in two-dimensional~2D!
diluted quantum Heisenberg antiferromagnets~HAF’s! have
attracted much interest because they are caused by the coex-
istence of quantum fluctuations and randomness.1–7 Numeri-
cal works8,9 and theoretical works10,11 have given various
estimates of the critical concentration of the system withS
51/2. All of them are above the purely-geometrical percola-
tion threshold on a square lattice,pcl50.5927460(5).12 This
suggests that the phase transition could be seriously affected
by quantum fluctuations.

Recently, Katoet al.13 have investigated the diluted 2D
HAF with S51/2, 1, 3/2, and 2 by means of the quantum
Monte Carlo~QMC! method with the continuous-imaginary-
time loop algorithm.14–17 Their conclusion is qualitatively
different from the above mentioned results: the critical con-
centration coincides withpcl and does not depend onS. The
coincidence of the critical concentration withpcl has also
been reported on the bond-diluted HAF.18

The critical exponents of the phase transition atpcl have
also been estimated. Katoet al. have obtained the critical
exponentb of the zero-temperature staggered magnetization.
Interestingly, the value ofb is different from that of the
classical (S5`) exponent and depends onS. They have also
estimated other critical exponents by the finite-size scaling
~FSS! analysis assuming the following form for the static
staggered structure factor at zero temperature:

Ss~L,0,p!;LCS̃s@L1/n~p2pcl!#, ~1!

whereL is the system size and

Ss~L,T,p![
1

Ld (
i , j

eikW•(rW i2rW j )^Si
zSj

z& ~2!

with kW5(p,p) andd52. The bracket̂ •••& in Eq. ~2! de-
notes both the thermal and random averages. The scaling
function S̃s(x) in Eq. ~1! has the following asymptotic form:

S̃s~x!;H x2b for x@1

uxu2nC for x!21,
~3!

where the exponentb is related toC and n by the scaling
relation

2b5~d2C!n. ~4!

They have estimated the critical exponentC by the FSS
analysis exactly atp5pcl and have found that it depends on
S.

Kato et al. have attributed theS dependence in exponent
b or C to quantum fluctuations, while the length exponentn
is assumed to be given by the classical one,ncl54/3,19 which
governs a power-law divergence of the mean size of con-
nected spin clusters asl(p)}up2pclu2ncl. Namely, they
have assumed that the staggered spin correlation function
between two spins in a cluster is described by the scaling
expression

C~ i , j ;p!;r i , j
2aC̃@r i , j /l~p!#, ~5!

with C̃(x);const. atx!1. The power-law decay of the cor-
relation function is due to quantum fluctuations and its
S-dependent exponenta is related toC by

C52D2d2a, ~6!

whereD is the fractal dimension (91/48 ford52). Kato et
al. have checked this scenario simply by evaluatingn
through Eq.~4! usingb andC obtained by their simulation.

In the present paper, we perform the FSS analysis on
Ss(L,0,p) of systems withS51/2 and 1 more systematically
by carrying out the QMC simulation at various concentra-
tions not only atpcl . It is found, as we see below, that our
QMC data are well described by the FSS form of Eq.~1! in
a whole range ofp studied, which includes the asymptotic
rangesx@1 andx!21 in Eq. ~3!. Within numerical accu-
racy of our analysis, exponentC turns out to definitely de-
pend on the spin sizeS, while exponentn does not. The latter
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S-independent value ofn coincides with the classical one
~54/3! within the error bar. These results further support the
above mentioned scenario of the quantum phase transition in
the diluted 2D HAF, particularly, the ansatz that the length
scale characterizing the transition is nothing but the mean
size of connected spin clusters.

The system we study is the site-diluted HAF on a square
lattice described by the Hamiltonian

H5J(
^ i , j &

e ie jSi•Sj , ~7!

where J(.0) is the antiferromagnetic coupling constant,
(^ i , j & denotes the summation over all nearest-neighbor pairs
andSi is the quantum spin operator at sitei. The quenched
magnetic occupation factors$e i% independently take 1 or 0
with probability p and 12p, respectively. We simulateL
3L square lattices with the periodic boundary condition by
means of the same QMC method with the continuous-
imaginary-time loop algorithm as that adopted by Katoet al.
An improved estimator is used to calculate the static stag-
gered structure factor. At each parameter set (L,T,p) physi-
cal quantities of interest are averaged over 1000–3000
samples. At each sample, 103–104 Monte Carlo steps~MCS!
are spent for measurement after 500–103 MCS for thermal-
ization.

In a finite system,Ss(L,T,p) converges rapidly to its
zero-temperature values at temperatures lower than the gap
due to the finiteness of the system. The saturation tempera-
ture turns out to be smaller for smallerup2pclu. In the
present workSs(L,0,p) close to pcl is approximated by
Ss(L,T,p) at the following temperatures: for theS51/2 sys-
temT50.002J for L524 andT50.001J for L532, 40, and
48, and for theS51 systemT50.01J for L524 and T
50.005J for L532, 40, and 48.

Let us first examine the FSS analysis ofSs(L,0,p) at p
close to pcl . The results of theS51/2 (S51) system at
0.580<p<0.605 (0.585<p<0.600) are shown in Figs. 1~a!
and 1~b!. The error bars in the figures represent the standard
deviation. In the FSS fit the critical concentration is set to be
pcl (.0.5927460), and the scaling functionS̃s(x) is approxi-
mated by a polynomial of order 2. As seen in Fig. 1~a!, the
QMC data forS51/2 are well scaled withC51.192 andn
51.23. The statistical accuracy of the fit is shown in Fig. 2,
where we draw the confidence region within which the true
values ofC andn fall with probability 68.3%~1-s), 95.3%
~2-s), or 99.7%~3-s). Similarly, the data forS51 are well
scaled withC51.555 andn51.09, as seen in Figs. 1~b! and
2. From these results we can conclude that exponentC defi-
nitely depends on the spin sizeS. The exponentsn of S
51/2 and 1, on the other hand, coincide with each other and
with its classical value (54/3) within the numerical accu-
racy of the present analysis. The obtained values ofC, n, a,
andb are summarized in Table I. The exponentsa andb are
calculated by the scaling relations, Eqs.~4! and ~6!.

The value ofC for S51/2 obtained above is consistent

TABLE I. Summary of critical exponentsC, n, a, andb for
S51/2, 1 and the classical case (S5`). The values ofC andn are
obtained by the FSS analysis shown in Figs. 1~a! and 1~b!, anda is
calculated asa52D2d2C, andb asb5(d2C)n/2.

S C n a b

1/2 1.192~9! 1.23~16! 0.600~9! 0.50~7!

1 1.555~8! 1.09~14! 0.237~8! 0.24~4!

` 1.79167 1.33333 0. 0.13889

FIG. 1. Scaling plot ofSs(L,0,p) for ~a! S51/2 and~b! S51.

The dashed line representsS̃s(x), which is approximated by a poly-
nomial of order 2.

FIG. 2. Confidence region ofC andn. The percentages 68.3%
~1-s), 95.4%~2-s), and 99.7%~3-s) represent the probability that
the true parameter values fall within the confidence regions. The
classical value ofC is 1.79167. The vertical dashed line indicates
the classical value ofn, 4/3.
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with the one@51.17(6)# that has been estimated by Katoet
al. from Ss(L,0,p) at p5pcl . In their analysisSs(L,0,pcl) is
approximated bySs(L,T,pcl) at low temperatures where itsT
dependence becomes nondiscernible within the error bars.
Kato et al. have also performed the FSS analysis making use
of the data at all temperatures they have simulated. This
analysis yieldsC51.27(2) which differs distinctly from the
present result listed in Table I. This discrepancy may be due
to the systematic error in our estimates whereSs(L,0,p) is
approximated bySs(L,T,p) at a small but finite temperature
as described before. It should be remedied when the finite-
temperature FSS analysis is carried out as done by Katoet
al.

From Fig. 2 one sees that the accuracy ofn is signifi-
cantly poorer than that ofC, which is interpreted as follows.
The value ofC can be essentially extracted solely from
Ss(L,0,pcl), while to evaluaten we needSs(L,0,p) at p other
thanpcl , or dSs(L,0,p)/dp at p5pcl . Naturally, the statisti-
cal error ofn is expected to be larger than that ofC. Con-
cerned with the systematic error inn arising from finite-
temperature corrections, on the other hand, the saturation
temperature ofSs(L,T,p) becomes smaller for smaller
up2pclu, i.e., the effect of finite-temperature corrections to
Ss(L,T,p) becomes maximal exactly atp5pcl . This implies
that the leading order finite-temperature correction to
dSs(L,0,p)/dp at p5pcl disappears, and so the systematic
error in n is much smaller than that inC.

Next let us discussSs(L,0,p) in the full range ofp we
have simulated, i.e., 0.2<p<1, which is much wider than
that in Fig. 1. As shown in Figs. 3~a! and 3~b!, respectively,
for S51/2 and 1, all QMC data turn out to lie on a universal
curve whenL2CSs(L,0,p) are plotted againstL1/nup2pclu by
using the exponentsC and n listed in Table I. For
L1/nup2pclu.1, the data points merge to the dashed line,
which representsax2b for p.pcl and buxu2nC for p,pcl ,
whereb, n, andC are those listed in Table I, anda andb
are arbitrary constants adjusted to fix the position of the
asymptotic lines. At much largerL1/nup2pclu the scaling fit
becomes deteriorated, indicating that the correspondingp is
out of the scaling region. The results shown in Fig. 3 also
support the scenario due to Katoet al. on the nonuniversal
quantum phase transition.

In summary, in order to establish nature of the nonuniver-
sal quantum phase transition of 2D site-diluted HAF’s for
S51/2 and 1, we have performed the QMC simulation in a
relatively wider region of concentration than that of Katoet
al. and have estimated the critical exponentn more system-
atically. We have observed that the static staggered structure
factor is well described by the scaling form of Eq.~1! with
Eq. ~3!. In particular, the exponentn is confirmed to coincide
with the classical one. These results support the following

arguments by Katoet al.: ~1! there exists no other macro-
scopic characteristic lengths thanl(p), the mean size of
connected spin clusters at concentrationp, and~2! the stag-
gered spin correlation function between two sites on a fractal
cluster decays in a power law asC( i , j ;p);r i , j

2a , wherea
depends on the strength of quantum fluctuations specified by
the spin sizeS.

Most of the numerical calculations for the present work
have been performed on the CP-PACS at the University of
Tsukuba, the Hitachi SR-2201 at the Supercomputer Center,
University of Tokyo, and the SGI2800 at the Institute for
Solid State Physics, University of Tokyo. The present work
was supported by the ‘‘Large-scale Numerical Simulation
Program’’ of the Center for Computational Physics, Univer-
sity of Tsukuba, and also by the ‘‘Research for the Future
Program’’ ~JSPS-RFTF97P01103! of the Japan Society for
the Promotion of Science.
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