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Critical behavior of the quantum phase transition of a site-diluted Heisenberg antiferromagnet on a square
lattice is investigated by means of the quantum Monte Carlo simulation with the continuous-imaginary-time
loop algorithm. Although the staggered spin-correlation function decays in a power law with the exponent
definitely depending on the spin si&the correlation-length exponent is classical, ive=,4/3. This implies
that the length scale characterizing the nonuniversal quantum phase transition is nothing but the mean size of
connected spin clusters.

DOI: 10.1103/PhysRevB.63.140415 PACS nunt®er75.10.Jm, 75.10.Nr, 75.40.Cx, 75.40.Mg
Ground-state phase transitions in two-dimensiof2d)) _ x2B for x>1
diluted quantum Heisenberg antiferromagn@i&\F’'s) have Sy(x)~ X" for x<—1 3

attracted much interest because they are caused by the coex-
istence of quantum fluctuations and randomreé&lumeri-  where the exponens is related to¥ and » by the scaling
cal work$® and theoretical work8'! have given various relation

estimates of the critical concentration of the system \@th

=1/2. All of them are above the purely-geometrical percola- 2p=(d=¥)v. (4)
tion threshold on a square lattige,=0.59274605).1? This
suggests that the phase transition could be seriously affect
by quantum fluctuations.

Recently, Katoet al'® have investigated the diluted 2D
HAF with S=1/2, 1, 3/2, and 2 by means of the quantum
Monte Carlo(QMC) method with the continuous-imaginary-
time loop algorithmt*=1” Their conclusion is qualitatively
different from the above mentioned results: the critical con
centration coincides witp. and does not depend @& The
coincidence of the critical concentration with, has also
been reported on the bond-diluted HAF.

The critical exponents of the phase transitiorpgthave
also been estimated. Katt al have obtained the critical _— — o
exponent3 of the zero-temperature staggered magnetization. Ch.Jp)=ri el AP, ®)
Intergstingly, the value of is different from that of the \yih C(x)~const. ax<1. The power-law decay of the cor-
classical §=c¢) exponent and depends &nThey have also  yejation function is due to quantum fluctuations and its
estimated other critical exponents by the finite-size scalings gependent exponet is related to¥ by
(FSS analysis assuming the following form for the static
staggered structure factor at zero temperature: T=2D-d—q, (6)

T(_Eey have estimated the critical exponeht by the FSS
E alysis exactly ap=p, and have found that it depends on
S

Kato et al. have attributed th& dependence in exponent
B or ¥ to quantum fluctuations, while the length exponent
is assumed to be given by the classical ane= 4/3° which
governs a power-law divergence of the mean size of con-
nected spin clusters as(p)«=|p—py|~*¢. Namely, they
have assumed that the staggered spin correlation function
between two spins in a cluster is described by the scaling
expression

Ve Uy whereD is the fractal dimension (91/48 fat=2). Kato et
S(L,0p)~L S{L™(p—pa)], (D al. have checked this scenario simply by evaluating
through Eq.(4) using 3 and¥ obtained by their simulation.

In the present paper, we perform the FSS analysis on
S(L,0,p) of systems withS=1/2 and 1 more systematically

1 P by carrying out the QMC simulation at various concentra-
S(L.T.p)=—; > htimnygrsy) (2)  tions not only atp. It is found, as we see below, that our

L™ QMC data are well described by the FSS form of EqQ.in

wherelL is the system size and

. a whole range op studied, which includes the asymptotic
with k= (7, ) andd=2. The bracket---) in Eq.(2) de-  rangesx>1 andx<—1 in Eq.(3). Within numerical accu-
notes bgth the thermal and random averages. The Scalir}gcy of our ana|ysiS, exponem turns out to def|n|te|y de-
function S(x) in Eq. (1) has the following asymptotic form: pend on the spin siz8 while exponent does not. The latter
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-0.2-0.15-0.1-0.05 0 005 0.1 0.15 0.2 FIG. 2. Confidence region oF andv. The percentages 68.3%
LYY (p-py) (1-0), 95.4%(2-0), and 99.7%(3-0) represent the probability that
the true parameter values fall within the confidence regions. The
0.17 — T T T T classical value of¥’ is 1.79167. The vertical dashed line indicates
0165 L=24 O §§D . the classical value o#, 4/3.
0.16 | 32 0 .as"'% :
~  0.155 F 0 - mé.é}"' ) In a finite system,S{(L,T,p) converges rapidly to its
éf 015 1 8 ° L zero-temperature values at temperatures lower than the gap
ST & 1 due to the finiteness of the system. The saturation tempera-
s 0145 g 1 ture turns out to be smaller for smallép—pg|. In the
| AQ k C'I .
N 014 s S=1 - present workSy(L,0,p) close top. is approximated by
0.135 + ’,EW' ¥=1555 - S(L,T,p) at the following temperatures: for tt&=1/2 sys-
0.13 _&-"4(b) ve109 A tem T=0.002) for L =24 andT=0.001J for L =32, 40, and
0.125 \ . . . . ) . 48, and for theS=1 systemT=0.01J for L=24 andT
202 015 -01 005 0 005 0.1 015 02 =0.009) for L=32, 40, and 48.
LY (p-py) Let us first examine the FSS analysis &fL,0p) atp

close topy. The results of thes=1/2 (S=1) system at
0.580<p=0.605 (0.585:p=<0.600) are shown in Figs(d)

and 1b). The error bars in the figures represent the standard
deviation. In the FSS fit the critical concentration is set to be
P (=0.5927460), and the scaling functi®gx) is approxi-
Sindependent value of coincides with the classical one Mated by a polynomial of order 2. As seen in Figa)lthe
(=4/3) within the error bar. These results further support theQMC data forS=1/2 are well scaled with=1.192 andv
above mentioned scenario of the quantum phase transition iif 1.23. The statistical accuracy of the fit is shown in Fig. 2,

the diluted 2D HAF, particularly, the ansatz that the lengthwhere we draw the confidence region within which the true
scale characterizing the transition is nothing but the meaalues of¥ anduv fall with probability 68.3%(1-c), 95.3%

FIG. 1. Scaling plot ofS(L,0,p) for (a) S=1/2 and(b) S=1.
The dashed line represer8gx), which is approximated by a poly-
nomial of order 2.

size of connected Spin clusters. (2-0’), or 997%(3-0’) Slmllarly, the data folS=1 are well
The system we study is the site-diluted HAF on a squarécaled with¥ =1.555 andv=1.09, as seen in Figs(l) and
lattice described by the Hamiltonian 2. From these results we can conclude that expovedefi-

nitely depends on the spin siZ The exponents of S
=1/2 and 1, on the other hand, coincide with each other and
H:JZ €SS, (7)  with its classical value €4/3) within the numerical accu-
Y racy of the present analysis. The obtained value of, «,

where J(>0) is the antiferromagnetic coupling constant, andg are summarized in Table I. The exponeatand are
3 ;) denotes the summation over all nearest-neighbor paira/culated by the scaling relations, E¢$) and (6).

and S is the quantum spin operator at siteThe quenched The value of¥ for S=1/2 obtained above is consistent
magnetic occupation factofs;} independently take 1 or O N
with probability p and 1—p, respectively. We simulaté TABLE I. Summary of critical exponent¥, v, «, and 3 for

X L square lattices with the periodic boundary condition byS=1/2, 1 and the classical casé<=). The values ofl" and» are
means of the same QMC method with the continuousobtained by the FSS analysis shown in Figg) &nd 1b), anda is
imaginary-time loop algorithm as that adopted by Katal ~ calculated ase=2D—d—¥, and asf=(d—¥)v/2.

An improved estimator is used to calculate the static stag-

gered structure factor. At each parameter e (p) physi- v v « A

cal quantities of interest are averaged over 1000-3000 1/2 1.1929) 1.2316) 0.60Q9) 0.507)
samples. At each sample,*t.0* Monte Carlo stepgMCS) 1 1.55%8) 1.0914) 0.2378) 0.244)
are spent for measurement after 5003-MCS for thermal- o 1.79167 1.33333 0. 0.13889

ization.
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with the ong[ =1.17(6)] that has been estimated by Kab I T
al. from S{(L,0,p) atp=pg. In their analysisS{(L,0,p.) is g=1 ﬁay"
approximated bys(L,T,p¢) at low temperatures where its 2 ,&5 ~x2B
dependence becomes nondiscernible within the error bars. __ 0.1 F Mo 822 1
Kato et al. have also performed the FSS analysis making use & e YT Bagego
of the data at all temperatures they have simulated. This :% T o‘;.\b
analysis yieldsV =1.27(2) which differs distinctly from the NG 0.01 | 1 =24 @ Pom_ 137V
present result listed in Table I. This discrepancy may be due 4 B 3 o %\5‘&
to the systematic error in our estimates wh&gd ,0p) is 0.001 | 40 o .
approximated bys(L,T,p) at a small but finite temperature 48 o ™
as described before. It should be remedied when the finite- @ 64 v
temperature FSS analysis is carried out as done by Kato 0.0001 0' . 1 1'0
al. i L Ll/v | i
From Fig. 2 one sees that the accuracyrofs signifi- PPei
cantly poorer than that o¥, which is interpreted as follows. — : .
The value of W can be essentially extracted solely from 1F S=1 5953,5 ——————— K
S¢(L,0,p), while to evaluater we needS¢(L,0,p) atp other 4,‘5—%‘@”83 ,
thanpg, or 8S(L,0,p)/Sp at p=pg . Naturally, the statisti- o1 k eeaﬁa%%&'g.gi":\ ~ b ]
cal error ofv is expected to be larger than that¥f Con- = T %
cerned with the systematic error in arising from finite- 3 "‘qi V¥
temperature corrections, on the other hand, the saturation % 0.01 LSRG
temperature ofSy(L,T,p) becomes smaller for smaller 'L L=16 © &95%\
|[p—peql, i.e., the effect of finite-temperature corrections to 0.001 | ‘ g; 2 o |
S(L,T,p) becomes maximal exactly pt=p. This implies ’ 0 A o
that the leading order finite-temperature correction to ®) 48 o
6S4(L,0,p)/ dp at p=p disappears, and so the systematic 0.0001 L ' L
error in v is much smaller than that i. - 01 i 10
Next let us discus$(L,0,p) in the full range ofp we LY Ip—pgl
have simulated, i.e., 0s2p=<1, which is much wider than
that in Fig. 1. As shown in Figs.(8 and 3b), respectively, FIG. 3. The double-logarithmic plot df ~¥S(L,0p) against

for S=1/2 an_dqll, all QMC data turn out to Ii(la/von auniversal| wj,_p | for (@) S=1/2 and(b) S=1. Dashed lines represent

curve wherl " ¥'S(L ,0,p) are plotted againdt [P—pal by  ax?# and blx| Y.

using the exponentsV and v listed in Table I. For

LY"|p—pg|>1, the data points merge to the dashed line, _

which representax?? for p>p, andb|x|~*¥ for p<p,, arguments by Katet al: (1) there exists no other macro-

where 8, v, and¥ are those listed in Table |, armlandb ~ SCopic characteristic lengths thar(p), the mean size of

are arbitrary constants adjusted to fix the position of the?@Nnected spin clusters at concentragprand(2) the stag-

asymptotic lines. At much largar”|p—p,| the scaling fit gered spin correlation function between two sites on a fractal
. [

becomes deteriorated, indicating that the corresponplieg ~ ¢1USter decayﬁ in a povr\]/erflaw &"J;ﬂp)wri-'a' where_cfv'
out of the scaling region. The results shown in Fig. 3 a|sodhepen_ds o_netSe strength of quantum fluctuations specified by
support the scenario due to Kagb al. on the nonuniversal the spin siz
guantum phase transition. Most of the numerical calculations for the present work
In summary, in order to establish nature of the nonuniverhave been performed on the CP-PACS at the University of
sal quantum phase transition of 2D site-diluted HAF’s for Tsukuba, the Hitachi SR-2201 at the Supercomputer Center,
S=1/2 and 1, we have performed the QMC simulation in aUniversity of Tokyo, and the SGI2800 at the Institute for
relatively wider region of concentration than that of Katio  Solid State Physics, University of Tokyo. The present work
al. and have estimated the critical exponentnore system- was supported by the “Large-scale Numerical Simulation
atically. We have observed that the static staggered structuferogram” of the Center for Computational Physics, Univer-
factor is well described by the scaling form of EG) with sity of Tsukuba, and also by the “Research for the Future
Eqg.(3). In particular, the exponentis confirmed to coincide Program” (JSPS-RFTF97P011D®f the Japan Society for
with the classical one. These results support the followinghe Promotion of Science.
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