154 research outputs found
Preliminary Water Assessment Reports of The Test Basins of The Watch Project
This report presents the initial plans of the case studies how they link to rest of the Watch project and on which water resources they will focus. This report will function as the basis for further discussions on how to improve the integration of the case studies within the project and to develop a more general protocol for each of the case studies. Currently 5 catchments are used within the Watch project, they differ in climatic and hydro-geological features and expected climate changes: the Glomma River basin (Eastern Norway), the upper Guadiana basin (Central Spanish Plateau), the Nitra River basin (central Slovakia), the Upper-Elbe basin (part of the Elbe River) and the island of Crete. Also the water resources issues vary over these cases. Agricultural (and domestic) water use is under pressure in the Mediterranean catchments probably aggravating with the expected increase in drought frequency under future climate. The Norwegian catchment provides hydropower services under threat of precipitation increase rather than decrease. The central European catchments are threatened mainly by increased variability, i.e. increased frequencies of extremes in a densely populated environment, and river flow may need additional buffers (reservoirs) to reduce floodrisk and store water for dry period
Water
Water resources in the Mediterranean are scarce.
They are limited, unevenly distributed and often mismatching human and environmental needs.
Three quarters of the resource are located in the northern Mediterranean while three quarters of the needs are in the south and east. As a consequence, approx. 180 million people in the southern and eastern Mediterranean countries suffer from water scarcity (<1,000 m3 capita-1 yr-1). The main water user is agriculture, in particular on the southern and eastern rim. The percentage of irrigated land of the total cultivated area is 25% for the Mediterranean Basin and is currently increasing, likely with higher rates under even drier climate conditions in the future. Water demand for both tourism and agriculture peak in summer, potentially enhancing tensions and conflicts in the future. Municipal water use is particularly constrained in the south and will likely be exacerbated in the future by demographic and migration phenomena. In parallel, northern countries face additional risks in flood prone areas where population and urban settlements are rapidly increasing.
Climate change, in interaction with other drivers (mainly demographic and socio-economic developments), has mainly negative consequences for the water cycle in the Mediterranean Basin, including reduced runoff and groundwater recharge, increased crop water requirements, increased conflicts among users, and increased risk of overexploitation and degradation. These impacts will be much more important for global warming higher than 2°C.
Strategies and policies for water management and climate change adaptation are strongly interconnected with all other sectors (e.g., the Water-Energy and Food Nexus). Technical solutions are available for improving water use efficiency and increasing reuse. Seawater desalination is increasingly used as adaptation measure to reduce (potable) water scarcity in arid and semi-arid Mediterranean countries, despite known drawbacks in terms of environmental impacts and energy requirements.
Promising solar technologies are under development, potentially reducing emissions and costs. Reuse of wastewater is a solution for agriculture and industrial activities but also recharge of aquifers. Inter-basin transfers may lead to controversies and conflicts. Construction of dams contributes to combat water and energy scarcities, but with trade-offs in terms of social and environmental impacts. Overall, water demand management, which increases water use efficiency and reduces water losses, particularly in urban environments, is crucial for a sustainable development. Maintaining Mediterranean diet or coming back to it on the basis of locally produced food and reducing food wastes may save water but also carbon emissions while having nutritional benefits
Recommended from our members
Global glacier volume projections under high-end climate change scenarios
The Paris agreement aims to hold global warming to well below 2°C and to pursue efforts to limit it to 1.5°C relative to the pre-industrial period. Recent estimates based on population growth and intended carbon emissions from participant countries, suggest global warming may exceed this ambitious target. Here we present glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding +2°C global average warming relative to the preindustrial period. Glacier volume is modelled by developing an elevation-dependent mass balance model for the Joint UK Land Environmental Simulator (JULES). To do this, we modify JULES to include glaciated and un-glaciated surfaces that can exist at multiple heights within a single grid-box. Present day mass balance is calibrated by tuning albedo, wind speed, precipitation and temperature lapse rates to obtain the best agreement with observed mass balance profiles. JULES is forced with an ensemble of six Coupled Model Intercomparison Project Phase 5 (CMIP5) models which were downscaled using the high resolution HadGEM3-A atmosphere only global climate model. The ensemble mean volume loss at the end of the century plus/minus one standard deviation is, minus;64±5% for all glaciers excluding those on the peripheral of the Antarctic ice sheet. The uncertainty in the multi-model mean is rather small and caused by the sensitivity of HadGEM3-A to the boundary conditions supplied by the CMIP5 models. The regions which lose more than 75% of their initial volume by the end of the century are; Alaska, Western Canada and US, Iceland, Scandinavia, Russian Arctic, Central Europe, Caucasus, High Mountain Asia, Low Latitudes, Southern Andes and New Zealand. The ensemble mean ice loss expressed in sea-level equivalent contribution is 215.2±21.3mm. The largest contributors to sea level rise are Alaska (44.6±1.1mm), Arctic Canada North and South (34.9±3.0mm), Russian Arctic (33.3±4.8mm), Greenland (20.1±4.4), High Mountain Asia (combined Central Asia, South Asia East and West), (18.0±0.8mm), Southern Andes (14.4±0.1mm) and Svalbard (17.0±4.6mm). Including parametric uncertainty in the calibrated mass balance parameters, gives an upper bound global volume loss of 247.3mm, sea-level equivalent by the end of the century. Such large ice losses will have inevitable consequences for sea-level rise and for water supply in glacier-fed river systems
Climate drivers of global wildfire burned area
Wildfire is an integral part of the Earth system, but at the same time it can pose serious threats to human society and to certain types of terrestrial ecosystems. Meteorological conditions are a key driver of wildfire activity and extent, which led to the emergence of the use of fire danger indices that depend solely on weather conditions. The Canadian Fire Weather Index (FWI) is a widely used fire danger index of this kind. Here, we evaluate how well the FWI, its components, and the climate variables from which it is derived, correlate with observation-based burned area (BA) for a variety of world regions. We use a novel technique, according to which monthly BA are grouped by size for each Global Fire Emissions Database (GFED) pyrographic region. We find strong correlations of BA anomalies with the FWI anomalies, as well as with the underlying deviations from their climatologies for the four climate variables from which FWI is estimated, namely, temperature, relative humidity, precipitation, and wind. We quantify the relative sensitivity of the observed BA to each of the four climate variables, finding that this relationship strongly depends on the pyrographic region and land type. Our results indicate that the BA anomalies strongly correlate with FWI anomalies at a GFED region scale, compared to the strength of the correlation with individual climate variables. Additionally, among the individual climate variables that comprise the FWI, relative humidity and temperature are the most influential factors that affect the observed BA. Our results support the use of the composite fire danger index FWI, as well as its sub-indices, the Build-Up Index (BUI) and the Initial Spread Index (ISI), comparing to single climate variables, since they are found to correlate better with the observed forest or non-forest BA, for the most regions across the globe
Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model
This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility:
This article has no additional data.We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity. This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.European Union FP7Joint UK BEIS/Defra Met Office Hadley Centre Climate Programm
Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5° C and 2° C global warming with a higher-resolution global climate model
We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity.
This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’
Proof of concept for a new sensor to monitor marine litter from space
Worldwide, governments are implementing strategies to combat marine litter. However, their effectiveness is largely unknown because we lack tools to systematically monitor marine litter over broad spatio-temporal scales. Metre-sized aggregations of floating debris generated by sea-surface convergence lines have been reported as a reliable target for detection from satellites. Yet, the usefulness of such ephemeral, scattered aggregations as proxy for sustained, large-scale monitoring of marine litter remains an open question for a dedicated Earth-Observation mission. Here, we track this proxy over a series of 300,000 satellite images of the entire Mediterranean Sea. The proxy is mainly related to recent inputs from land-based litter sources. Despite the limitations of in-orbit technology, satellite detections are sufficient to map hot-spots and capture trends, providing an unprecedented source-to-sink view of the marine litter phenomenon. Torrential rains largely control marine litter inputs, while coastal boundary currents and wind-driven surface sweep arise as key drivers for its distribution over the ocean. Satellite-based monitoring proves to be a real game changer for marine litter research and management. Furthermore, the development of an ad-hoc sensor can lower the minimum detectable concentration by one order of magnitude, ensuring operational monitoring, at least for seasonal-to-interannual variability in the mesoscale.Junta de AndalucÃa (Spain)
Ministerio de Ciencia e Innovación (Spain)
European Commission (European Union)
Universidad de Cádiz (Spain)
Ocean+
European Space Agency (France)
EMME12 página
A quantitative evaluation of the issue of drought definition: a source of disagreement in future drought assessments
Droughts are anticipated to intensify in many parts of the world due to climate change. However, the issue of drought definition, namely the diversity of drought indices, makes it difficult to compare drought assessments. This issue is widely known, but its relative importance has never been quantitatively evaluated in comparison to other sources of uncertainty. Here, encompassing three drought categories (meteorological, agricultural, and hydrological droughts) with four temporal scales of interest, we evaluated changes in the drought frequency using multi-model and multi-scenario simulations to identify areas where the definition issue could result in pronounced uncertainties and to what extent. We investigated the disagreement in the signs of changes between drought definitions and decomposed the variance into four main factors: drought definitions, greenhouse gas concentration scenarios, global climate models, and global water models, as well as their interactions. The results show that models were the primary sources of variance over 82% of the global land area. On the other hand, the drought definition was the dominant source of variance in the remaining 17%, especially in parts of northern high-latitudes. Our results highlight specific regions where differences in drought definitions result in a large spread among projections, including areas showing opposite signs of significant changes. At a global scale, 7% of the variance resulted independently from the definition issue, and that value increased to 44% when 1st and 2nd order interactions were considered. The quantitative results suggest that by clarifying hydrological processes or sectors of interest, one could avoid these uncertainties in drought assessments to obtain a clearer picture of future drought change
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Billions of people rely on groundwater as being an accessible source of drinking water and for irrigation, especially in times of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will impact groundwater systems globally and, thus, the availability of this vital resource. Groundwater recharge is an important indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways (RCPs). Results suggest that projected changes strongly vary among the different GHM–GCM combinations, and statistically significant changes are only computed for a few regions of the world. Statistically significant GWR increases are projected for northern Europe and some parts of the Arctic, East Africa, and India. Statistically significant decreases are simulated in southern Chile, parts of Brazil, central USA, the Mediterranean, and southeastern China. In some regions, reversals of groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of changing atmospheric CO2 and climate on vegetation and, thus, evapotranspiration, we investigate how estimated changes in GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge changes of up to 100 mm per year. Most GHMs with active vegetation simulate less severe decreases in groundwater recharge than GHMs without active vegetation and, in some regions, even increases instead of decreases are simulated. However, in regions where GCMs predict decreases in precipitation and where groundwater availability is the most important, model agreement among GHMs with active vegetation is the lowest. Overall, large uncertainties in the model outcomes suggest that additional research on simulating groundwater processes in GHMs is necessary
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
As the adverse impacts of hydrological extremes increase in many regions of the world, a better
understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk
management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about
the processes, interactions, and feedbacks in complex human–water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e. two floods
or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and
cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both
floods and droughts, in the number of cases assessed and in the quantity of socio-hydrological data. The benchmark dataset comprises (1) detailed review-style reports about the events and key processes between the two
events of a pair; (2) the key data table containing variables that assess the indicators which characterize management shortcomings, hazard, exposure, vulnerability, and impacts of all events; and (3) a table of the indicators
of change that indicate the differences between the first and second event of a pair. The advantages of the
dataset are that it enables comparative analyses across all the paired events based on the indicators of change
and allows for detailed context- and location-specific assessments based on the extensive data and reports of
the individual study areas. The dataset can be used by the scientific community for exploratory data analyses, e.g. focused on causal links between risk management; changes in hazard, exposure and vulnerability; and
flood or drought impacts. The data can also be used for the development, calibration, and validation of sociohydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al., 2023,
https://doi.org/10.5880/GFZ.4.4.2023.001)
- …