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Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration
scenario. To provide more detailed representations of climate processes and impacts, the
spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution
than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface
model to examine the projected changes in weather extremes and their implications for
freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate
responses are assessed, examining ranges of outcomes in impacts to inform risk assessments.
Despite some degree of inconsistency between components of the study due to the need to
correct for systematic biases in some aspects, the outcomes from different ensemble members
could be compared for several different indicators. The projections for weather extremes
indices and biophysical impacts quantities support expectations that the magnitude of change
is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with
increases being more intense than seen in CMIP5 projections. Precipitation-related extremes
show more geographical variation with some increases and some decreases in both heavy
precipitation and drought. There are substantial regional uncertainties in hydrological impacts
at local scales due to different climate models producing different outcomes. Nevertheless,
hydrological impacts generally point towards wetter conditions on average, with increased
mean river flows, longer heavy rainfall events, particularly in South and East Asia with the
most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global
warming. Some areas are projected to experience shorter meteorological drought events and
less severe low flows, although longer droughts and/or decreases in low flows are projected
in many other areas, particularly southern Africa and South America. Flows in the Amazon
are projected to decline by up to 25%. Increases in either heavy rainfall or drought events
imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this
vulnerability is projected to remain smaller than at 2°C global warming in approximately 76%
of developing countries. At 2°C, four countries are projected to reach unprecedented levels of
vulnerability to food insecurity.

This article is part of the theme issue ‘The Paris Agreement: understanding the physical and
social challenges for a warming world of 1.5°C above pre-industrial levels’.

1. Introduction
The majority of climate-change impacts assessments have tended to be framed in terms of future
time horizons, e.g. impacts by the middle or end of the twenty-first century [1,2]. However,
with international climate policy now largely focused on limiting warming to specific levels of
global mean temperature such as 2°C [3] or 1.5°C [4], policy-relevant climate impacts assessments
increasingly need to be framed in terms of such warming levels.

There are two major research questions concerning the impacts of climate change at 1.5°C and
2°C global warming, which are relevant to both mitigation and adaptation policy areas.

(i) How much larger are the impacts at 2°C compared to 1.5°C? This is the primary question
arising from the Paris Agreement [4] and is relevant to mitigation policy, informing
judgements and actions on holding the global temperature rise to ‘well below 2°C’ and
‘pursuing efforts to limit the temperature increase to 1.5°C’.

(ii) What regional climate conditions and related hydrological and ecological conditions
could occur at a particular level of global warming, such as 2°C? This is relevant to
adaptation policy and planning—exploring the possible outcomes for these levels of
warming will help facilitate adaptation and improved resilience to account for a 1.5°C or
2°C world. It is recognized that many adaptation decisions require information on timing
of specific impacts or risks, but nevertheless, framing regional impacts assessments in
terms of associated global warming levels (GWLs) may help provide context of the levels
of climate change that may be avoidable or unavoidable (and hence require adaptation).
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A combination of the above questions is also relevant—how does the range of outcomes at 2°C
compare to that at 1.5°C? This is also relevant to adaptation policy, as it can inform assessment on
whether to adapt to potential impacts at 2°C or just 1.5°C. Putting in place adaptation measures
to deal with potential impacts at 1.5°C and then increasing these to deal with 2°C later may
be more expensive and difficult than adapting to potential risks at 2°C at the outset. On the
other hand, because adaptation actions may themselves have consequences, unnecessary over-
adaptation may have undesirable effects which it may be preferable to avoid or at least delay
until absolutely necessary.

Both questions require an appropriate assessment of uncertainty. There are considerable
uncertainties in projections of regional climate change, with different climate models projecting
regional climate changes that can differ in magnitude or even, in the case of precipitation
and impacts quantities strongly related to this, differ in sign [5,6]. This may have important
implications for regional impacts at specific levels of global warming. A common approach to
exploring and presenting such uncertainties is to examine the ensemble mean and the level of
consensus among the ensemble members on the sign of the change. While this can often be useful
in informing an assessment of the level of confidence in future projections, it may not always be
sufficient to fully inform decisions. Risk assessment approaches require consideration of a range
of possible risks, not just the most likely. This paper explores a range of regional climate states
and related impacts that occur at global warming of 2°C, and a range of differences with warming
limited to 1.5°C.

We examine the implications of our new climate projections by applying some commonly
used indices of climate extremes, and a further index quantifying relative vulnerability to food
insecurity which combines climate extremes indices with information on a range of factors
representing sensitivity and adaptability of food systems to climate hazards. We also use the
climate projections to drive a global land surface model to simulate changes in run-off as
an indicator of freshwater availability. We assess whether regional extremes are projected to
increase or decrease at 2°C global warming, and whether the consequent impact on drought and
vulnerability to food insecurity become greater or smaller. We also assess whether these changes
are reduced by limiting global warming to 1.5°C. We explore some of the uncertainties in these
projections, and, in particular, examine whether the use of ensemble-mean projections is a useful
simple guide to impacts projections or whether this can lead to a misleading impression for some
impacts. Regarding vulnerability to food insecurity, we consider the impacts of global warming
at 1.5°C and 2°C alongside socio-economic influences that affect the sensitivity to climate change.
We also consider our climate-change impacts results in comparison with other studies using older,
lower-resolution climate projections.

A large number of previous studies have assessed potential impacts of future climate change
using the 5th Coupled Model Intercomparison Project (CMIP5) ensemble or subsets of this [7],
and some have framed this in terms of impacts at global warming of 1.5°C and/or 2°C [8,9]. We
also base our study on a subset of CMIP5 projections, but use a new, higher-resolution atmosphere
model to provide greater spatial detail and improved representation of atmospheric processes.

2. Methods and models

(a) Global climate simulations at 1.5°C and 2°C global warming
There are a number of ways in which 1.5°C or 2°C global warming can be defined—one could
be the long-term climate state following a stabilization of warming at that level, another could
be the state over a shorter period around the time of first reaching that level. Here we choose the
second definition, which is what is seen first and hence needs to be adapted to. There are also
a number of methods with which such changes can be assessed [10]. We take the opportunity
of availability of a new set of higher-resolutions transient climate and impacts simulations, and
use a time-sampling methodology [10] to assess global-scale impacts at these resolutions for the
first time.
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Rather than using the original CMIP5 ensemble as in previous studies, the aim is to allow for
an improved representation of atmospheric and land surface processes including extremes by
using higher spatial resolution [11].

HadGEM3 (Hadley Centre Global Environment Model version 3) is a configuration of the UK
Met Office Unified Model (MetUM) which has been developed for use for both climate research
and weather prediction applications. It is the result of converging the development of the Met
Office’s weather and climate global atmospheric model components so that, where possible,
atmospheric processes are modelled or parametrized seamlessly across spatial resolutions and
timescales.

The high-resolution simulations were performed using the HadGEM3A Global Atmosphere
(GA) 3.0 model [12–14] at a resolution of N216 (0.556° of latitude by 0.833° of longitude with
gridboxes of approx. 60 km length in mid-latitudes). This is the atmospheric component of
the HadGEM3-GC2 coupled climate model [15,16], which is part of the HadGEM3 family of
climate models [12]. This represents the third generation of HadGEM configurations, leading
on from the HadGEM2 family of climate model configurations [13] which was used for CMIP5.
Key improvements over the previous model, HadGEM2, include increased vertical levels in the
atmosphere (85 compared to 38) and substantial changes to the model dynamics (ENDGame) [17].
This version of the HadGEM3 model lies in the transition from CMIP5 to CMIP6 versions. The Met
Office is currently operationally running the coupled HadGEM3-GC2 model at N216 resolution
for seasonal and decadal forecasting and clear benefits are emerging from this use at higher
resolution [18,19].

We ran the model using only its atmosphere and land components, with time-varying sea-
surface temperatures (SSTs) and sea-ice concentrations (SICs) prescribed as input quantities. This
approach was taken for two reasons: (i) to provide a rapid first analysis of the implications
of the higher resolution for projections of climate extremes and impacts—an atmosphere-
only simulation requires considerably less computing time than a coupled ocean–atmosphere
general circulation model (GCM); (ii) to allow us to explore, to some degree, uncertainties in
regional climate changes by using SSTs and SICs from different climate models. To explore these
uncertainties in the regional impacts of climate change, we carried out six HadGEM3 atmospheric
simulations driven by time-varying SSTs and SICs from a subset of projections from the CMIP5
with the RCP8.5 scenario. The assumption here is that SSTs and SICs provide a substantial
influence on regional patterns of climate change over land, so using a range of SST and SIC
patterns in a single atmosphere model goes some way towards representing the range of regional
climate changes that would arise in a set of different coupled ocean–atmosphere GCMs. This
approach will not capture the full range of uncertainty affecting regional climate changes over
land, because it still relies on one atmosphere model and one land surface scheme, so responses
to radiative forcing that depend mainly on atmospheric process or land-atmosphere interactions
will still be constrained by the behaviour of that single model. Nevertheless, we consider that
our experimental design avoids the reliance on one single realization of climate and hence allows
some of the uncertainties in regional climate-change impacts to be illustrated and explored.

The SSTs and SICs were taken from a subset of the CMIP5 transient projections performed with
the RCP8.5 scenario from 1979 to 2100—the CMIP5 members were selected as representative of a
range of outcomes for future climate change, including high and low climate sensitivity, different
biases in baseline precipitation climatology, and different global patterns of precipitation change.
Specific levels of global warming such as 1.5°C or 2°C were defined on the basis of the global
mean temperature in the original CMIP5 projections. The time of reaching a specific level of global
warming, therefore, varied between ensemble members. The CMIP5 SSTs were not bias-corrected,
which means that the results here may be sensitive to systematic errors arising from biases in the
present-day SST patterns.

Atmospheric greenhouse gas concentrations were prescribed from the standard RCP8.5
concentration scenario. Aerosol concentrations were calculated within the model, with aerosol
emissions prescribed again from the standard RCP8.5 scenario. This means that the greenhouse
gas and aerosol concentrations, and hence radiative forcing, were the same in all ensemble
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Table 1. ClimPACT weather extremes indices.

ID definition units sector of relevance

TXx annual maximum daily maximum temperature °C health, agriculture and food security
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TX90p percentage of days above the 90th percentile
of daily maximum temperature in the
1981–2010 average

% health, agriculture and food security,
water resources and hydrology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CDD maximum number of consecutive days with
precipitation less than 1 mm

days health, agriculture and food security,
water resources and hydrology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RX5day maximum consecutive 5 day precipitation mm health, agriculture and food security,
water resources and hydrology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

members at any given date. Since specific levels of global warming such as 1.5°C or 2°C were
reached at different times in the different ensemble members, according to the SST forcings used,
any given level of global warming could be associated with different radiative forcings in different
ensemble members. In any given ensemble member at any specific level of global warming, the
CO2 concentration and SSTs were the same as in the driving CMIP5 model at that GWL. Land
cover was fixed in this simulation—there was no dynamic vegetation nor any time-dependent
anthropogenic land use change.

Some comparison of the higher-resolution atmospheric simulations with the original CMIP5
simulations, is provided by Wyser et al. [20].

(b) Temperature and precipitation extremes: the ClimPACT indices
To quantify changes in weather extremes projected in our climate simulations, we calculated
a number of indices designed to be relevant to sector-specific impacts using an established
methodology, ClimPACT [21] (table 1)

(c) Food security: the Hunger and Climate Vulnerability Index
To assess implications of climate change for vulnerability to food insecurity, we used an
adaptation of the Hunger and Climate Vulnerability Index (HCVI) [22]. The HCVI was developed
by the United Nations World Food Programme to provide a country-level assessment of
vulnerability to food insecurity as a result of climate-related events. We used a new iteration of the
HCVI which makes use of gridded climate model projections to understand the impact of climate
change on vulnerability to food insecurity, and the benefits that adaptation can bring via scenarios
of adaptation investment [23]. This iteration of the HCVI only considers in-country production
of food and does not account for food trade. For this reason, the HCVI is only calculated for
122 developing and least-developed countries (defined here as countries not in the OECD or EU
which can be resolved by the scale of the climate model; i.e. larger than 500 km2).

The index provides quantification at the national level across the globe of the scale and
direction of impact of climate change on food insecurity. As such, it aims to provide the following:
(i) information to help policy-makers understand the level of challenge to global food security that
climate change presents; (ii) information on the geography of the impacts and help to evaluate the
relative benefits of mitigation and adaptation responses.

The index is not intended to be a detailed planning tool, but aims to help planners evaluate the
nature of the top-level threat to food insecurity that climate change presents, thereby supporting
prioritization of effort.

The HCVI consists of three equally weighted components: exposure to climate-related hazards,
sensitivity of national agricultural production to climate-related hazards, and adaptive capacity—
a measure of a country’s ability to cope with climate-related food shocks. The sensitivity and
adaptive capacity components are based on data from the World Bank, World Resources Institute,
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Figure 1. Hunger and Climate Vulnerability Index for 1981–2010 climate (ensemble mean across the bias-corrected HadGEM3
ensemble).

Table 2. Proxies for flood and drought events used in the HCVI.

extreme weather event description of proxy

average length of flood events number of days in which the cumulative daily rainfall excess is positive,
compared with the 95th percentile in the 1981–2010 average

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average length of drought events number of days in which the cumulative daily rainfall deficit is positive,
compared with the 20th percentile in the 1981–2010 average

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UN Food and Agriculture Organization, UN Development Programme and UN Population
Fund [22]. The exposure component comprised proxies for the average length of flood and
drought events calculated with daily precipitation data [23] (table 2). These proxies were chosen
above other possible metrics as they were required to replace self-reported instances of flood
and drought events used in the original HCVI, which correlate with undernutrition data at the
country-level [23]. The proxies were therefore masked to only include data where a significant
proportion of people live and grow crops before aggregating to country level and combining to
comprise a measure of exposure [23]; nevertheless, it is recognized that precipitation data alone
may not always be adequate for representing flood and drought events, so the current method is
regarded as preliminary.

The impacts of projected climate change, therefore, act through changes in these quantities. In
the current version of the HCVI, climate-change impacts on other quantities such as crop yield
are not considered. Socio-economic factors affecting sensitivity and adaptive capacity are fixed at
present-day conditions.

The ensemble-mean baseline HCVI calculated with the high-resolution bias-corrected
HadGEM3 ensemble is shown in figure 1. The spatial pattern is compatible with HCVI values
calculated using reanalysis data at the CMIP5 grid-scale resolution [23]; the most vulnerable
regions are sub-Saharan Africa and South Asia. This higher-resolution climate data enables
inclusion of additional countries which were not resolved in the lower-resolution CMIP5 data.
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In the present study, processing errors in the input data for one ensemble member, the
HadGEM2-ES-driven member, caused the results to be invalid. Results for this member for the
HCVI are, therefore, not presented here.

(d) Freshwater resources: run-off
Impacts on freshwater were assessed with a version of the JULES land surface model [24,25], a
coupled ecosystem–hydrology–surface exchange model which simulates land-atmosphere fluxes
of water, energy and carbon in an internally consistent way, typically applied at global scales.
Variants of JULES form the land surface scheme of Met Office Hadley Centre Earth System
Models [26,27] and have been used to assess impacts of climate change on global terrestrial
ecosystems and hydrology [28–30] within such models. JULES can also be used outside of the
Earth System Model (ESM), driven by meteorological outputs of other ESMs to assess impacts of
a wider range of climate projections [6,8]. Here we use a new, higher-resolution configuration of
JULES on a global grid of 0.5° resolution [31].

It has been noted that hydrological impacts models driven by climate-change projections
from climate models tend to give more severe drying than simulated in the climate models
themselves [32–34]. This is largely attributed to the inclusion of plant stomatal closure in
response to elevated CO2 in the climate model land surface schemes, which generally reduces
evapotranspiration relative to climate projections without this process and hence further increases
run-off/streamflow or ameliorates decreases [34]. This process is often omitted from standard
hydrological models. Plant physiological responses to CO2 are included in the JULES model, so
our projections of changes in run-off here do account for this process.

We used each HadGEM3 simulation to drive JULES to simulate changes in run-off due to
the effects of climate change and CO2 rise on precipitation, evaporation and transpiration. We
analysed 30 year periods centred around the year of crossing GWLs of 1.5°C and 2°C relative to
pre-industrial. We examined changes in both mean flows and low flows (defined as the flows for
the lowest 10% of time).

(e) Correcting biases in climatemodel output and implications for defining levels of global
warming

The ClimPACT extreme weather indices, HCVI and JULES run-off simulations were all performed
using outputs from the higher-resolution HadGEM3 projections described in §2a. However, there
were some differences in how these data were applied, with different approaches to the treatment
of systematic biases in the climate model output. For the ClimPACT analysis, it was considered
important to assess changes in the raw climate model output, because this directly represents
the behaviour of the model itself. The main focus was on the changes relative to the present-
day baseline climate, defined as 1981–2010, with absolute values in either the baseline or the
GWLs of 1.5°C and 2°C being only of secondary interest. For the HCVI and JULES run-off
analyses, however, it was considered important to correct for systematic biases in the climate
model output, because these can lead to unrealistic representations of the key quantities in the
present-day simulation [35]. A bias-correction methodology was, therefore, applied for these two
parts of the analysis, whereby the model output was adjusted to make it consistent with an
observed climatology [36]. We used a multi-segment statistical bias-correction methodology for
precipitation [37], and a modification of this for other variables [37].

This difference in approach led to inconsistencies in the definitions of the dates of GWLs
in the two parts of the study. In the extremes analysis using raw model output, the dates of
passing GWLs were defined on the basis of the global mean temperatures in the driving CMIP5
models relative to those models’ simulations of global mean temperature in 1870–1899 (table 3).
However, in the HCVI and JULES analyses which used bias-corrected data, it was considered
more appropriate for the GWLs to be defined using the warming in the observational dataset
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Table 3. Time of reaching GWLs of 1.5°C and 2°C in the raw output from the HadGEM3 climate simulations, driven by different
sets of CMIP5 sea-surface temperatures. The dates are the centre year of a 20-year period for which the climate data are applied
to the calculation of the ClimPACT indices.

driving SSTs 1.5°C 2.0°C

IPSL-CM5A-LR 2015 2030
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GFDL-ESM2M 2040 2055
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HadGEM2-ES 2027 2039
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IPSL-CM5A-MR 2020 2034
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MIROC-ESM-CHEM 2023 2035
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACCESS1–0 2034 2046
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

up to present-day plus model-projected warming thereafter (table 4). While this does lead to
inconsistent definitions of dates of the GWLs for applications of the climate model output with
and without bias correction, the focus here is on the level of warming relative to pre-industrial
rather than the timing of this warming. Therefore, priority is given to an accurate quantification
of GWLs in all parts of the study, at the expense of inconsistencies in the dates of these warming
levels. The inconsistency between the dates of the GWLs ranged from 2 to 9 years depending on
the model and warming level. This inconsistency would have consequences if these results were
applied to time-dependent impacts and adaptation assessments, but that is not the case here so
this concern does not apply. However, one issue is that the time-dependent nature of the aerosol
forcing means that the spatial pattern of regional climate responses varies over time, so this will
lead to some degree of inconsistency between the analysis of the ClimPACT extremes and the
HCVI and JULES impacts projections.

3. Results
For a world at 2°C global warming, we present a range of outcomes to provide insight into the
level of agreement between models for a particular projected change, and hence an indication
of potential robustness of the projected changes for informing adaptation. We then make a
comparison of impacts at global warming 1.5°C to investigate the level of impact that would
be avoided by limiting global warming to different levels. Bearing in mind the uncertainty in
regional climate outcomes, we address this in a number of ways. For individual realizations, we
compare the impacts at different warming levels to see if they are systematically smaller at 1.5°C,
even if the sign of the change is uncertain. We also compare the range of outcomes at different
GWLs, to see if the regional-scale uncertainty itself increases with global warming.

(a) Climate-change impacts at 2°C global warming
For 2°C global warming, the ensemble-mean increase in annual daily maximum temperature was
above 2°C for most of the land surface, with the exception of the Indian subcontinent, most of
Australia and Antarctica (figure 2). The increase was higher still in many regions; most of North
America, much of China and north Asia, northwestern South America and all of Europe. In the
northern and eastern USA and much of northern and western Europe, the annual daily maximum
temperature increased by over 4°C for 2°C global warming. The global mean TXx increased by
more than 2°C in all ensemble members (table 5), so the maximum temperature warming more
than the global annual mean is a consistent result across all projections here, as found in previous
studies with other models [9] (table 5).

The different ensemble members give somewhat different results at regional scales, although
there is a strong consensus on the temperature extremes examined here becoming warmer. In
the simulations driven by SSTs and SICs from the two IPSL CMIP5 models, most of the global
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Figure 2. Simulated changes in annual dailymaximum temperature relative to 1981–2010 at 2°C globalwarming, for individual
HadGEM3 simulations driven by SSTs and SICs from different members of the CMIP5 ensemble, and the ensemble mean. The
labels above each panel identify the driving CMIP5 model (or ensemble mean).

Table 4. Time of reaching GWLs of 1.5°C and 2°C in each bias-corrected output from the HadGEM3 climate simulations, driven
by different sets of CMIP5 sea-surface temperatures. The dates are the centre year of a 20 year period for which the climate data
is applied to the HCVI calculation and JULES simulations.

driving SSTs 1.5°C 2.0°C

IPSL-CM5A-LR 2024 2035
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GFDL-ESM2M 2036 2051
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HadGEM2-ES 2019 2033
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IPSL-CM5A-MR 2023 2036
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MIROC-ESM-CHEM 2020 2032
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACCESS1-0 2026 2040
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

land surface sees an increase in annual daily maximum temperature which is similar to the global
annual mean temperature increase. In the IPSL-driven simulations, increases in TXx substantially
larger than the GWL are confined to the eastern USA, Europe and part of northeast Asia. By
contrast, the GFDL-driven simulation shows much of the global land surface seeing increases
in annual daily maximum temperature larger than the global mean warming. Much of the mid-
latitudes experience an increase in TXx of over 4°C. The very largest increases of 5°C or more
are seen in central North America, Europe and northwestern Asia. Similar results are seen in the
MIROC and ACCESS models.

The percentage of days exceeding the 90th percentile of daily maximum temperature increase
more in tropical areas (figure 3). Some areas show over 60% of days above this level at 2°C global
warming compared with present day, whereas in the mid-latitudes between 20% and 30% of days
exceed this level. The global mean is between 20% and 30% in all ensemble members (table 3).
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Figure 3. Simulated changes in the percentage of days with daily temperature above the 90th percentile for 1981–2010 at 2°C
global warming, for individual HadGEM3 simulations driven by SSTs and SICs from different members of the CMIP5 ensemble,
and the ensemble mean. The labels above each panel identify the driving CMIP5 model (or ensemble mean).

Indices based upon daily precipitation often show more spatial variability in changes
than the temperature-based indices, and greater differences between ensemble members, but,
nevertheless, some consistent pictures still emerge.

The number of consecutive dry days is projected to increase over some regions and decrease
in others (figure 4). Southern Africa, the Mediterranean, Australia and northeast South America
are projected to have increased dry spell lengths, while this is projected to decrease in central and
eastern Asia. The general pattern of these projections is broadly consistent across the ensemble
members. However, the global mean changes vary in sign (table 5), as a result of different
magnitudes of regional changes dominating in different ensemble members.

Perhaps more surprisingly, projected changes in maximum 5 day rainfall (Rx5day) also vary
in sign both geographically and between models (figure 5). Extreme rainfall might simplistically
be expected to increase in a warmer climate, and indeed the global mean change is a consistent
increase in all ensemble members (table 5). Regional Rx5day is projected to increase over many
regions including parts of southeast Asia, southern South America, northern Australia and the
east coast of the USA. However, some regions (particularly, the central Amazon and the northern
coast of South America) are projected to see a decrease in Rx5day.

Large increases in Rx5day are simulated in south and southeast Asia in all models, but
with local details varying. Southeastern South America (broadly southern Brazil and northern
Argentina) also see large increases in Rx5day in all models. All models show only small changes
over central and north Africa, Europe and most of Asia. In northern South America, however,
some models show increases in Rx5day but others show decreases. This suggests that the
ensemble-mean result of a decrease in Rx5day in this area may be subject to large uncertainty.
Inter-model variations in the sign of changes are seen in a few other local localized regions.

The average length of flood events (number of days in which the cumulative daily rainfall
excess is positive, compared to the 95th percentile of the baseline) generally increase over most
of the land surface, although this increase was mostly by a day or less (figure 6). However, some
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Figure 4. Simulated changes in the number of consecutive dry days relative to 1981–2010, at 2°C global warming, for individual
HadGEM3 simulations driven by SSTs and SICs from different members of the CMIP5 ensemble, and the ensemble mean. The
labels above each panel identify the driving CMIP5 model (or ensemble mean).

Table 5. Global mean changes at 2°C global warming compared to present day for individual ensemble members, for the
ClimPACT indices, the flood and drought proxies used as input to the HCVI calculations, and percentage change in mean
precipitation (Pmean), mean run-off (Rmean) and low run-off (Rlow).

IPSL-
CM5A-LR

GFDL-
ESM2M

HadGEM2-
ES

IPSL-
CM5A-MR

MIRC-ESM-
CHEM ACCESS1-0

ensemble
mean

TXx (°C) 2.1 2.8 2.5 2.9 2.4 2.8 2.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TX90p (% time) 20.1 24.3 24.9 29.0 23.5 27.9 25.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CDD −3.0 0.9 −3.4 −5.7 −2.0 −5.5 −2.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RX5day (mm) 3.5 5.4 6.9 6.8 6.0 6.7 5.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

drought proxy 0.76 0.89 n.a. 0.38 0.38 0.66 0.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flood proxy 0.83 0.82 n.a. 0.75 0.73 0.78 0.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pmean (%) 2.1 3.4 5.0 3.0 5.3 2.9 4.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rmean (%) 2.4 6.5 8.1 4.4 8.6 4.9 5.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rlow (%) −2.0 3.8 11.2 8.0 9.4 5.1 5.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

areas are projected to see an increase in flood event lengths of 4 days or more, particularly India
and Bangladesh, for which such increases are projected in all ensemble members to some extent.
Increases of 2–4 days are also projected in parts of Brazil by all ensemble members, although
the magnitude and location within the country varied between members. Similar increases are
projected in the region of the Horn of Africa and southern Arabian Peninsula in several members.

The HCVI calculated for 2°C global warming showed very large geographical variability
(figure 7) which relates largely to differences in socio-economic factors [22]. Differences in the
climate change simulated in different ensemble members leads to some variation in the HCVI at
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Figure 5. Simulated changes in the annual maximum rainfall over 5 days relative to 1981–2010, at 2°C global warming, for
individual HadGEM3 simulations driven by SSTs and SICs from different members of the CMIP5 ensemble, and the ensemble
mean. The labels above each panel identify the driving CMIP5 model (or ensemble mean).

2°C, although the geographical variation is still dominated by the non-climatic factors (figure 7).
Therefore, the ensemble-mean change is a reasonable guide to the results.

The ensemble mean is higher in nearly all assessed countries relative to the baseline (figure 8).
The greatest increase was in Oman, followed by India, Bangladesh and Saudi Arabia, then Brazil
and a number of its neighbouring countries. Smaller increases in HCVI were seen across Africa.
Southeastern Africa showed larger increases than Central Africa. The HCVI decreased in three
countries: Mali, Burkino Faso and Sudan.

The ensemble members showed broadly consistent changes in HCVI at 2°C global warming,
with increases in most assessed countries and generally similar sets of countries experiencing the
largest and smallest changes. Southeastern Africa consistently showed larger increases in HCVI
than Central Africa, due to increased length of drought events projected in all ensemble members
(not shown). The length of flood events was not projected to increase in this region. The Sahel
region consistently showed one or more countries with a small decrease in the HCVI, although
the precise country or countries varied between ensemble members. The decrease in HCVI here
was due to projected decreases in length of drought, with length of flood events projected to
change little.

India is projected to see increased HCVI by all ensemble members, due to a consistent increase
in length of flood events projected in all members, outweighing the beneficial impact of decreased
length of drought which is again projected in all members.

Brazil is projected to see increased HCVI, but for reasons which vary between ensemble
members. Although the location of projected longer flood events varies across the country in
different members, the aggregation of the HCVI to the country level renders this geographical
variability irrelevant for such a large country because only the median value across the country
is used in the HCVI. Some ensemble members project longer drought for Brazil, which again
contributed to increased HCVI.
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Figure6. Simulated changes in the average length of flood events (number of days inwhich the cumulative daily rainfall excess
is positive, compared with the 95th percentile in 1981–2010, at 2°C global warming, for individual HadGEM3 simulations driven
by SSTs and SICs from different members of the CMIP5 ensemble, and the ensemblemean. The labels above each panel identify
the driving CMIP5 model (or ensemble mean).
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Figure 7. Hunger and Climate Vulnerability Index calculated for simulated climate states at 2°C global warming for five
individual HadGEM3 simulations driven by SSTs and SICs from different members of the CMIP5 ensemble, and the ensemble
mean.
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Figure 8. Change in Hunger and Climate Vulnerability Index relative to baseline calculated for simulated climate states at 2°C
globalwarming, for five individualHadGEM3 simulationsdrivenbySSTs andSICs fromdifferentmembers of theCMIP5ensemble,
and the ensemble mean.

Four countries show ensemble-mean HCVI values at 2°C global warming that are higher
than any seen in the baseline climate; these are Oman, Bangladesh, Mauritania and Yemen.
The implication of such HCVI values is that climate change at 2°C is projected to cause levels
of vulnerability to food insecurity that are greater than any seen in the present day. For
individual ensemble members, the number of countries with ‘unprecedented’ HCVI values at
2°C varies from three to seven. Conversely, many countries in the baseline climate have levels
of vulnerability to food insecurity that are greater than those expected in other countries under
2°C global warming. This suggests that other factors are already posing greater risk for food
insecurity than 2°C climate change is expected to cause in other countries, so the increased risk
from climate change should not overshadow the need to reduce vulnerability to food insecurity
arising from non-climatic factors. There is scope to reduce vulnerability to food insecurity by
addressing various socio-economic issues in such counties.

The JULES simulations show a general tendency towards increased run-off over
approximately half of the land surface (figure 9) and the majority of the major river basins
assessed (figure 10), but with large regional uncertainties including the possibility of decreased
flows in many basins. The ensemble-mean change in mean streamflow shows an increase of
between 5 and 25% over most of the Northern Hemisphere land surface, with some regions seeing
an increase of over 50% at 2°C global warming. Notable exceptions to this are western Europe and
southcentral USA, which see less than a 5% change in run-off, and the already very dry region of
the Sahara Desert where the existing very small run-off become even smaller.

Ensemble-mean projected changes in low run-off flows are generally larger (figure 11), with
the regions seeing an increase in mean run-off seeing a larger percentage increase in low
run-off—over 75% increases over much of North America, Eastern Europe and Asia. Note that
this does not necessarily imply a larger increase in absolute low flow compared to absolute mean
flow, because the baseline is (by definition) smaller for low flows. In western Europe, where the
changes in mean flows were less than 5%, the ensemble-mean low flow decreases by between 5
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Figure9. Changes in run-off formeanflows simulated by the JULES ecosystem–hydrologymodel under six climate simulations
at 2°C global warming. (a) Ensemble mean and (b) percentage of models agreeing on increased flow.

and 75%, especially in the Iberian Peninsula. Southern Africa also sees a decrease in low flows
where changes in mean flows were small. Changes in high run-off show similar patterns and
magnitudes to those in mean run-off.

The simulated changes in both mean and low run-off flows show substantial differences
among the six simulations (figures 10 and 11). In most basins examined here, the range of
outcomes include both increases and decreases in mean and low flows for any particular basin,
but generally with the largest proportion simulating increases in both mean and low flows. In a
few cases, notably the Lena in northeast Asia and Ganges in southeast Asia, the ensemble agreed
entirely or almost entirely on increased flows. Even here, the range of outcomes is large, with the
projected flow increases in the Ganges for 2°C global warming ranging from approximately 30%
to more than 110%.

Exceptions to the general picture of consensus on increasing flows are seen in the Amazon,
Orange, Danube and Guadiana basins where the range of projected extends more towards
decreased mean flows. Mean flows in the Amazon are projected to decline by up to 25% for 2°C
global warming. For low flows, the ensemble of projections entirely gives decreased flows at 2°C
global warming for these basins.

The signal of decreased flows was stronger for low flows than mean flows, and indeed in the
Niger, the range of mean flow changes extended more towards increases whereas the range of
low flow changes extended more towards decreases.

(b) Impacts at 1.5°C global warming compared to 2°C
For almost all quantities and simulations examined here, global-scale changes in extremes and
run-off at 1.5°C global warming (table 6) are smaller than those compared to 2°C (table 5;
figures 12 and 13). The exceptions to these are mean and low run-off which each show one
instance of a smaller change at 2°C than 1.5°C, but still with a majority of simulations showing
larger changes at 2°C (figure 13). For temperature-related indices, the ranges of change at the two
GWLs do not overlap—the change at 2°C in all members is larger than the change at 1.5°C in
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Figure 10. Distributions of changes in run-off for mean flows simulated by the JULES ecosystem–hydrology model under the
ensemble of six climate projections at 1.5°C (blue) and 2°C (orange) global warming. Boxes show the 25th and 75th percentile
changes, whiskers show the range, circles show the four projections that do not define the ends of the range, and crosses
show the ensemble means. Numbers in square brackets show the ensemble-mean flow in the baseline, in millimetres of rain
equivalent.

all members (figure 12). This is not the case for the precipitation and run-off results; for those
quantities, there is substantial overlap in the ranges of changes at 2°C and 1.5°C, so there is not a
consistent picture of how much wetter or drier the world is projected to be in this ensemble, even
though it involves a single atmosphere model.

For TXx, the difference between 2°C and 1.5°C global warming is larger than the 0.5°C
difference in global mean temperature across most of the land surface in all ensemble members
(figure 14). Although some ensemble members simulate local temperatures to be higher at 1.5°C
global warming than 2°C in some small regions, these are relatively localized and most regions
are cooler at 1.5°C global warming than 2°C. In many regions, the difference is between 0.5°C and
1.0°C, but many other regions see larger differences. In several ensemble members, the difference
is 1.5°C, 2°C or larger in large parts of North America, South America, Europe and China.
For example, over parts of Europe, where annual maximum daily temperature was projected
to increase by over 5°C for a 2°C global warming, the local increase is limited to 3–4°C for
1.5°C global warming. Limiting global warming by half a degree Celsius would, therefore, limit
maximum temperatures by three or four times as much in those areas (figure 14).

At 1.5°C global warming, although the increases in TXx are smaller than at 2°C, these increases
show similar geographical patterns as for 2°C in all ensemble members, with larger changes in
continental interiors especially in the mid-latitudes (not shown).

The percentage of days exceeding the 90th percentile of daily temperature (Tx90p) also
increases less at 1.5°C global warming than at 2°C (figure 15). The largest reductions are in the
tropics, where the largest increase was seen at 2°C; whereas at 2°C global warming, 50% or more
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Figure 11. Distributions of changes in run-off for low flows (flows for lowest 10% of time) simulated by the JULES ecosystem–
hydrology model under the ensemble of six climate projections at 1.5°C (blue) and 2°C (orange) global warming. Boxes show
the 25th and 75th percentile changes, whiskers show the range, circles show the four projections that do not define the ends of
the range, and crosses show the ensemble means. Numbers in square brackets show the ensemble-mean flow in the baseline,
in millimetres of rain equivalent.

Table 6. Global mean changes at 1.5°C global warming compared to present day for individual ensemble members, for the
ClimPACT indices, the flood and drought proxies used as input to the HCVI calculations, and percentage change in mean
precipitation (Pmean), mean run-off (Rmean) and low run-off (Rlow).

IPSL-
CM5A-LR

GFDL-
ESM2M

HadGEM2-
ES

IPSL-
CM5A-MR

MIROC-
ESM-CHEM ACCESS1-0

ensemble
mean

TXx (°C) 1.2 1.9 1.7 2.0 1.5 1.9 1.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TX90p (% time) 10.0 15.7 16.2 19.2 14.1 18.3 15.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CDD −1.2 0.7 −1.3 −5.4 0.0 −3.8 −1.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RX5day (mm) 1.1 3.6 4.5 4.6 4.0 4.3 3.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

drought proxy 0.74 0.48 n.a. 0.39 0.16 0.31 0.42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flood proxy 0.75 0.73 n.a. 0.73 0.79 0.73 0.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pmean (%) 1.4 0.9 3.1 1.3 3.9 2.4 2.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rmean (%) 2.1 0.7 5.4 0.7 6.7 5.0 3.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rlow (%) −3.4 0.3 5.9 2.2 5.9 4.9 2.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

days were projected to exceed the baseline 10th percentile, at 1.5°C this reduces by 15–20% or
more. Again, the patterns of change at 1.5°C retain a similar geographical pattern of greater
increases in the tropics than mid-latitudes (electronic supplementary material).
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Figure 12. Comparison of global mean changes in climate extremes indices relative to 1981–2010 at 2°C and 1.5°C global
warming for individual ensemble members and ensemble mean. (a) Change in annual daily maximum temperature;
(b) percentage of days with maximum temperature above 90th percentile for 1981–2010; (c) change in consecutive dry days;
(d) change in annual maximum 5-day rainfall.

For precipitation, generally similar changes are seen at 1.5°C global warming as at 2°C, but
smaller in magnitude (compare figures 16 and 4), suggesting that most of these changes are a
response to radiatively forced climate change as opposed to internal climate variability. However,
some localized changes do vary in sign between the GWLs, such as in South Australia, suggesting
a possible dominance of internal variability over the global warming signal in these places.

Where Rx5day increases, the increases are projected to be larger—in some cases approximately
double—at 2°C global warming than 1.5°C. Where Rx5day decreases, again the decreases are
projected to be larger at 2°C global warming than 1.5°C (figure 17).

Of the 122 countries assessed, 93 have smaller ensemble-mean HCVI calculated at 1.5°C global
warming than at 2°C, indicating an ensemble consensus that 76% of assessed countries would
see a smaller increase in vulnerability to food insecurity if global warming were limited to 1.5°C
(figures 18 and 19). Conversely, 24% of countries would, by this metric, see the same or higher
vulnerability to food insecurity at 1.5°C than 2°C. Of these, some are countries where HCVI
is projected to be lower at 2°C global warming than in the baseline. For example, in Mali the
ensemble-mean baseline HCVI of 0.83 increased slightly to 0.85 at 1.5°C then reduced to 0.81
at 2°C. In some countries, the ensemble-mean HCVI happened to be identical at both warming
levels. In Chad, for example, the baseline HCVI of 0.89 increased to 0.91 at both 1.5°C and 2°C.

As noted above, four countries saw ensemble-mean HCVI values at 2°C above any seen
in the baseline, and this number increased to seven at 1.5°C. The same four countries with
‘unprecedented’ HCVI values at 2°C also saw ‘unprecedented’ values at 1.5°C; these were Oman,
Bangladesh, Mauritania and Yemen. These were joined by Myanmar, India and Cambodia as
having ‘unprecedented’ values at 1.5°C. The role of internal climate variability in the HCVI
results needs to be assessed, as does the effect of potential nonlinear interactions between the
flood and drought metric. Until the reasons behind these country-specific results are understood,
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Figure 13. Globalmean percentage changes relative to 1981–2010 in (a) precipitation over land, (b) mean run-off flows, (c) low
run-off lows (10th percentile), at 2°C and 1.5°C global warming.

this comparison of the number of ‘unprecedented’ HCVI values at 1.5°C and 2°C should be
treated with caution. Nevertheless, the finding that some countries see HCVI values higher at
either or both 1.5°C and 2°C compared to the baseline may indicate that climate change has the
potential to lead to unprecedented levels of vulnerability to food insecurity in some countries.
More robustly, it can be concluded that by this metric, overall worldwide vulnerability to food
insecurity generally increases with global warming, and for approximately three-quarters of
countries assessed, this increase is larger at 2°C than 1.5°C.

In the ensemble mean, changes in mean, low and high flows are generally larger at 2°C global
warming compared to 1.5°C (figure 20). This is often the case for both increases and decreases
in flows—increasing the level of global warming magnifies the pattern of river flow changes,
although not in all cases.

The range of projected mean run-off changes is larger for 2°C than 1.5°C in many basins,
but this was not always the case, with many basins showing similar or smaller ranges at
2°C compared with 1.5°. Moreover, the ranges overlap substantially, so in terms of the set of
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Figure 14. Difference in annual maximum daily maximum temperature between 2°C and 1.5°C global warming, for individual
ensemble members and ensemble mean.
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Figure 15. Difference between 2°C and 1.5°C global warming for percentage of days with maximum temperature above 90th
percentile of baseline, for individual ensemble members and ensemble mean.

possible outcomes projected here, the differences between 2°C and 1.5°C are not always clear. The
differences between 2°C and 1.5°C are not always in the same direction as the changes at 2°C; in
the Amazon, for example, the difference in flow between 2°C and 1.5°C varies from positive to
negative between ensemble members.
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Figure 16. Difference in consecutive dry days between 2°C and 1.5°C global warming, for individual ensemble members and
ensemble mean.
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Figure 17. Difference in annual maximum 5 day rainfall between 2°C and 1.5°C global warming, for individual ensemble
members and ensemble mean.
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Figure 18. Hunger and Climate Vulnerability Index at 1.5°C global warming (ensemble mean).
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Figure 19. Difference inHunger andClimateVulnerability Indexbetween2°Cand 1.5°Cglobalwarming, for individual ensemble
members and ensemble mean.

4. Discussion
In most cases, global mean changes at 2°C are larger than those at 1.5°C, not only for individual
members but also for the ensemble as a whole. All ensemble members show increases in TXx at
2°C which are larger than all changes at 1.5°C, and same true for most other variables.
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Figure 20. Difference between 2°C and 1.5°C globalwarming in percentage changes inmean (top) run-off in JULES simulations
driven by the ensemble of HadGEM3 simulations. Note that the use of percentage changes emphasizes changes in regionswhere
the baseline streamflow is small.

The largest regional differences between 2°C and 1.5°C global warming tend to be in the
regions where the local impact is largest relative to the baseline. For TXx this is generally the mid-
latitudes, whereas for TX90p it is generally the tropics. So, broadly, the impacts at 1.5°C global
warming could be estimated by scaling-back the impacts at 2°C.

These results show some similarities with those from the CMIP5 models [9,38], but also some
notable differences. The CMIP5 models were at lower spatial resolution than the models used
here. Although the general patterns of change in TXx are broadly similar in our study and
CMIP5, with greater warming in many continental interiors, is notable that our results show more
marked geographical variation than those from CMIP5 projections ([9], among others), with the
continental interior warming being more intense in our projections. In particular, our results with
HadGEM3 show more intense increases in maximum temperature in North America and Europe.

Our projections of changes in consecutive dry days (CDD) broadly consistent with those found
in a subset of the CMIP5 ensemble [9], although there are some differences. Our ensemble mean
suggests shorter dry spells in the central Amazon, whereas ISIMIP-indicated longer dry spells.
Also, as with the temperature indices, our results show greater geographical differentiation in the
intensity of changes.

The decrease in Rx5day in some regions in our simulations contrasts with the subset of
CMIP5 models used for the ISIMIP Fast-Track projections [9] which suggested an increase in
Rx5day almost everywhere where at least 66% of the model ensemble agreed on the sign of the
change, including all of northern South America. The reasons for these differences require further
investigation, but some insight into possible reasons may be gained by examining the similarities
and differences between our own individual ensemble members.

For all the CLIMPAct variables, the variations in global means between the ensemble members
were consistent at 1.5°C and 2°C. That is, the members with the largest changes at 2°C also showed
the largest changes at 1.5°C, and the same was true for the smallest changes, and the relative
proportions of changes in other ensemble members. This suggests that variations between the
ensemble members at any particular GWL were not merely a consequence of internal variability
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but also a result of the different forcings influencing the atmosphere model at the time of passing
each GWL, and the interaction with the climate sensitivity of HadGEM3. The radiative forcing
of non-CO2 forcings has previously been highlighted as a potentially important influence on
patterns of climate change at 1.5°C and 2°C global warming [39]. Furthermore, despite some
differences in regional climate responses between ensemble members, there were also some
remarkable consistencies especially in the changes that might be considered inconsistent with
a warming climate, such as regions such as northern South America where heavy rainfall
(Rx5day) decreases rather increasing as might be expected under a warming climate. Again, these
consistencies point to some common forcing of all simulations.

One key factor is the different times of passing a particular GWL, because the net radiative
forcing would be different even though the same emissions and concentration scenario was used
in all simulations. A given GWL was reached at a different time in each ensemble member, so
the CO2 and aerosol concentrations vary between ensemble members; in members reaching a
GWL early, such as that driven by IPSL-CM5A-LR, the CO2 concentration is relatively lower
than in other members, and the total aerosol concentration would be relatively higher (CO2
concentrations are projected to increase in RCP8.5, but aerosol concentrations are projected
decline). The net radiative forcing is smaller, because in RCP8.5 the increase positive radiative
forcing from CO2 is greater than the decrease in net negative radiative forcing from aerosols.
Moreover, the physiological effect of CO2 is also smaller, meaning that the consequent reduction
in transpiration and associated additional land surface warming influence would also be expected
to be smaller.

Conversely, in members reaching the same GWL later, such as that driven by GFDL-ESM2M,
CO2 concentration is relatively higher, and aerosol concentrations are lower. So, net radiative
forcing, CO2 physiological effects and the regional-scale radiative forcings from individual
aerosol types could, therefore, be quite different in the GFDL-driven HadGEM3 simulation when
it reaches 2°C global warming 25 years later than the IPSL-CM5A-LR-driven simulation.

The spatial pattern of changes in the different ensemble members may also play a role in
influencing the global mean changes, for example, with large changes in some regions due to
faster snow-melt or changes in cloud cover in one ensemble member leading to particular changes
in regional warming that are not seen in other ensemble members. Moreover, the individual
forcings of the different aerosol components such as sulfate and black carbon differ in sign and
spatial pattern, so the overall impact on local radiative forcing and hence regional temperature
patterns is more complex. Therefore, the global mean changes may not necessarily be expected to
relative to global mean forcings.

A further complexity in identifying precise mechanisms for regional changes is the
experimental design used here, with one atmospheric model and concentration/emissions
scenario but six different SST and SIC patterns, means that the impact of spatial heterogeneity in
radiative forcings is complex and involves a mix of effects in HadGEM3 and the original CMIP5
models. In the case of aerosols, for example, our HadGEM3 simulations are driven with RCP8.5
aerosol emissions and the aerosol concentrations are then calculated within the model itself. The
spatial distributions of aerosol optical depth and radiative forcing can, therefore, be expected
to be reasonably similar, because they arise from the same emissions scenario, although some
differences may occur due to the different regional climate-change patterns. However, the impact
of aerosols is also seen in the SST and SIC changes, because these will have responded to changes
in regional aerosol radiative forcing in the original CMIP5 simulations. Therefore, these SST and
SIC patterns will carry the ‘memory’ of aerosol changes in the original CMIP5 projections.

One example of an impact of changing aerosol radiative forcing could be the precipitation
changes in northern South America including Amazonia. All ensemble members show a general
drying in this region, as seen in RX5day and mean run-off results. The reduction in Rx5day is
particularly notable, because the general expectation would be for an increase in heavy rainfall
events in a warmer climate, as is seen in most other regions in these projections. This reduced
rainfall in the Amazon region may be associated with the reducing net negative aerosol radiative
forcing in the North Atlantic [40]. CO2 physiological forcing may also play a role here [41,42].
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A detailed investigation of these factors is beyond the scope of this paper; nevertheless, this
result illustrates the important point that the nature and patterns of the climate forcing at a
particular level of global warming can play an important role in determining the patterns of
regional impacts.

5. Conclusion
The higher-resolution HadGEM3 simulations project consistent increases in temperature-related
extremes, with larger changes at 2°C compared to 1.5°C and local changes being larger than the
global annual mean. There is a higher degree of spatial variation in our projections compared
with CMIP5-based studies.

In the model projections examined here, changes relating to the water cycle are complex, both
in their geographical pattern and in the variation between different models. The length of flooding
events generally increases across world in all models, but maximum rainfall can either increase or
decrease depending on locations. Global patterns of increase and decrease show some consistency
between the different GWLs, but also some local differences. Worldwide, most impacts broadly
tend to increase with global warming in most areas. For global mean changes, even when the sign
of change is uncertain, individual realizations generally show reduced impact at 1.5°C compared
with 2°C. However, this does not always hold even at the scale of major global river basins.

Vulnerability to food insecurity increases more at 2°C global warming than 1.5°C in
approximately three-quarters of countries assessed. The vulnerability increase can arise from
increases in either flooding or drought. Reduced drought leads to decreased vulnerability in a
limited number of cases.

Most simulations here project a general increase in mean streamflow in most of the basins
examined, but with a number of notable exceptions in the tropics. While flows in the Ganges are
consistently projected to increase by 30–110% at 2°C, Amazon flows could either increase by 3%
or decrease by 25%. Ensemble-mean changes in river flow often do not give a full impression of
the magnitude of changes that may be possible, so adaptation planning in particular should not
rely on ensemble-mean projections and instead consider a range of outcomes. The seasonal low
streamflows also increase in many basins, but not as many as for the mean flows—many basins
see decreased low flows in some or all projections.

Broadly, changes in weather extremes at 1.5°C global warming could be estimated by scaling-
back the impacts at 2°C, if this is done with individual ensemble members rather than the
ensemble mean. However, this was not always the case for impacts that depend on more complex
process or interactions between more than one climate variable, such as run-off and an indicator
of vulnerability to food insecurity.
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