171 research outputs found

    Temporal effects of Sprouty on lung morphogenesis

    Get PDF
    AbstractParacrine signaling mediated by FGF-10 and the FGF-R2IIIb receptor is required for formation of the lung. To determine the temporal requirements for FGF signaling during pulmonary morphogenesis, Sprouty-4 (Spry-4), an intracellular FGF receptor antagonist, was expressed in epithelial cells of the fetal lung under control of a doxycycline-inducible system. Severe defects in lobulation and severe lung hypoplasia were observed when Spry-4 was expressed throughout fetal lung development (E6.5–E18.5) or from E6.5 until E13.5. Effects of Spry-4 on branching were substantially reversed by removal of doxycycline from the dam at E12.5, but not at E13.5. In contrast, when initiated late in development (E12.5 to birth), Spry-4 caused less severe pulmonary hypoplasia. Expression of Spry-4 from E16.5 to E18.5 reduced lung growth and resulted in perinatal death due to respiratory failure. Expression of Spry-4 during the saccular and alveolar stages, from E18.5 to postnatal day 21, caused mild emphysema. These findings demonstrate that the embryonic-pseudoglandular stage is a critical time period during which Spry-sensitive pathways are required for branching morphogenesis, lobulation, and formation of the peripheral lung parenchyma

    Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors

    Get PDF
    To investigate the role of A2A adenosine receptors in adaptive responses to chronic intermittent dopamine receptor stimulation, we compared the behavioral sensitization elicited by repeated L-DOPA treatment in hemiparkinsonian wild-type (WT) and A2A adenosine receptor knock-out (A2A KO) mice. Although the unilateral nigrostriatal lesion produced by intrastriatal injection of 6-hydroxydopamine was indistinguishable between WT and A2A KO mice, they developed strikingly different patterns of behavioral sensitization after daily treatment with low doses of L-DOPA for 3 weeks. WT mice initially displayed modest contralateral rotational responses and then developed progressively greater responses that reached a maximum within 1 week and persisted for the duration of the treatment. In contrast, any rotational behavioral sensitization in A2A KO mice was transient and completely reversed within 2 weeks. Similarly, the time to reach the peak rotation was progressively shortened in WT mice but remained unchanged in A2A KO mice. Furthermore, daily L-DOPA treatment produced gradually sensitized grooming in WT mice but failed to induce any sensitized grooming in A2A KO mice. Finally, repeated L-DOPA treatment reversed the 6-OHDA-induced reduction of striatal dynorphin mRNA in WT but not A2A KO mice, raising the possibility that the A2A receptor may contribute to L-DOPA-induced behavioral sensitization by facilitating adaptations within the dynorphin-expressing striatonigral pathway. Together these results demonstrate that the A2A receptor plays a critical role in the development and particularly the persistence of behavioral sensitization to repeated L-DOPA treatment. Furthermore, they raise the possibility that the maladaptive dyskinetic responses to chronic L-DOPA treatment in Parkinson's disease may be attenuated by A2A receptor inactivation.Peer Reviewe

    Atomically resolved chemical ordering at the nm-thick TiO precipitate/matrix interface in V-4Ti-4Cr alloy

    Get PDF
    We have used advanced analytical electron microscopy to characterise the local structure and chemistry at the interface between nm-thick TiO precipitates and the V-based matrix in a V-4Ti-4Cr alloy. Our results reveal the presence of an intergrowth between the fcc TiO and bcc vanadium structures, with a repeat lattice distance that equals 2.5 times the vanadium lattice parameter along the c-axis. Our atomic resolution analysis of the interface will impact the mechanistic understanding of its interaction with interstitials and radiation-induced lattice defects, and consequently trigger the development of improved alloy structures with interfaces engineered for enhanced radiation tolerance

    Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2

    Get PDF
    We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss of dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel

    Sepsis in Internal Medicine wards: current knowledge, uncertainties and new approaches for management optimization

    Get PDF
    Sepsis represents a global health problem in terms of morbidity, mortality, social and economic costs. Although usually managed in Intensive Care Units, sepsis showed an increased prevalence among Internal Medicine wards in the last decade. This is substantially due to the ageing of population and to multi-morbidity. These characteristics represent both a risk factor for sepsis and a relative contra-indication for the admission to Intensive Care Units. Although there is a lack of literature on the management of sepsis in Internal Medicine, the outcome of these patients seems to be gradually improving. This is due to Internists’ increased adherence to guidelines and “bundles”. The routine use of SOFA score helps physicians in the definition of septic patients, even if the optimal score has still to come. Point-of-care ultrasonography, lactates, procalcitonin and beta-d-glucan are of help for treatment optimization. The purpose of this narrative review is to focus on the management of sepsis in Internal Medicine departments, particularly on crucial concepts regarding diagnosis, risk assessment and treatment.Key Messages Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The prevalence of sepsis is constantly increasing, affecting more hospital patients than any other disease. At least half of patients affected by sepsis are admitted to Internal Medicine wards. Adherence to guidelines, routine use of clinical and lab scores and point-of-care ultrasonography are of help for early recognition of septic patients and treatment optimization

    Sprouty4 Is an Endogenous Negative Modulator of TrkA Signaling and Neuronal Differentiation Induced by NGF

    Get PDF
    The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF

    Sprouty2 and Spred1-2 Proteins Inhibit the Activation of the ERK Pathway Elicited by Cyclopentenone Prostanoids

    Get PDF
    Sprouty and Spred proteins have been widely implicated in the negative regulation of the fibroblast growth factor receptor-extracellular regulated kinase (ERK) pathway. In considering the functional role of these proteins, we explored their effects on ERK activation induced by cyclopentenone prostanoids, which bind to and activate Ras proteins. We therefore found that ectopic overexpression in HeLa cells of human Sprouty2, or human Spred1 or 2, inhibits ERK1/2 and Elk-1 activation triggered by the cyclopentenone prostanoids PGA1 and 15d-PGJ2. Furthermore, we found that in HT cells that do not express Sprouty2 due to hypermethylation of its gene-promoter, PGA1-provoked ERK activation was more intense and sustained compared to other hematopoietic cell lines with unaltered Sprouty2 expression. Cyclopentenone prostanoids did not induce Sprouty2 tyrosine phosphorylation, in agreement with its incapability to activate tyrosine-kinase receptors. However, Sprouty2 Y55F, which acts as a defective mutant upon tyrosine-kinase receptor stimulation, did not inhibit cyclopentenone prostanoids-elicited ERK pathway activation. In addition, Sprouty2 did not affect the Ras-GTP levels promoted by cyclopentenone prostanoids. These results unveil both common and differential features in the activation of Ras-dependent pathways by cyclopentenone prostanoids and growth factors. Moreover, they provide the first evidence that Sprouty and Spred proteins are negative regulators of the ERK/Elk-1 pathway activation induced not only by growth-factors, but also by reactive lipidic mediators

    Spry1 Is Expressed in Hemangioblasts and Negatively Regulates Primitive Hematopoiesis and Endothelial Cell Function

    Get PDF
    Development of the hematopoietic and endothelial lineages derives from a common mesodermal precursor, the Flk1(+) hemangioblast. However, the signaling pathways that regulate the development of hematopoietic and endothelial cells from this common progenitor cell remains incompletely understood. Using mouse models with a conditional Spry1 transgene, and a Spry1 knockout mouse, we investigated the role of Spry1 in the development of the endothelial and hematopoietic lineages during development.Quantitative RT-PCR analysis demonstrates that Spry1, Spry2, and Spry4 are expressed in Flk1(+) hemangioblasts in vivo, and decline significantly in c-Kit(+) and CD41(+) hematopoietic progenitors, while expression is maintained in developing endothelial cells. Tie2-Cre-mediated over-expression of Spry1 results in embryonic lethality. At E9.5 Spry1;Tie2-Cre embryos show near normal endothelial cell development and vessel patterning but have reduced hematopoiesis. FACS analysis shows a reduction of primitive hematopoietic progenitors and erythroblastic cells in Spry1;Tie2-Cre embryos compared to controls. Colony forming assays confirm the hematopoietic defects in Spry1;Tie2-Cre transgenic embryos. Immunostaining shows a significant reduction of CD41 or CD71 and dpERK co-stained cells in Spry1;Tie2-Cre embryos compared to controls, whereas the number of VEC(+) and dpERK co-stained cells is comparable. Compared to controls, Spry1;Tie2-Cre embryos also show a decrease in proliferation and an increase in apoptosis. Furthermore, loss of Spry1 results in an increase of CD41(+) and CD71(+) cells at E9.5 compared with controls.These data indicate that primitive hematopoietic cells derive from Tie2-expressing hemangioblasts and that Spry1 over expression inhibits primitive hematopoietic progenitor and erythroblastic cell development and expansion while having no obvious effect on endothelial cell development
    corecore