928 research outputs found

    Effect of Carelink, an Internet-Based Insulin Pump Monitoring System, on Glycemic Control in Children with Type 1 Diabetes Mellitus

    Get PDF
    Objective : To determine whether use of the internet-based Carelink system improved glycemic control in children on insulin pump therapy. Research Design and Methods - We reviewed records of 146 children treated with insulin pump therapy between the years 2004-2007, and compared glycemic control and diabetes self-care measures associated with Carelink use. Forty percent of the patients resided one hour or more from our clinic. Results: Patients who used the Carelink software and website showed significant improvement in HbA1c levels following use (8.0 Ā± 0.1 (SE) vs 7.7 Ā± 0.1 (SE), p=0.002). They uploaded data from their pump and glucometer 2.2 Ā± 1.8 times per month over 0.8 Ā± 0.4 (SD) years. Patients who had no access to Carelink software and were followed in a conventional manner showed no change in HbA1c ( 8.0 Ā± 0.1 (SE) vs 8.1 Ā± 0.1 (SE), p=0.27) during the study period. These patients did not differ significantly from Carelink users in diabetes self care behaviors. Patients who had Carelink access but did not use it had a higher HbA1c level at the onset and did not change over the study period (HbA1c 8.9 Ā± 0.2 (SE) vs 8.9 Ā± 0.3 (SE), p=0.76). These patients differed significantly from Carelink users in self-care behaviors, but not in the frequency of blood glucose monitoring. Patients in a rural location benefited equally as compared to patients who lived within one hour of our clinic. Conclusions: The Carelink software program is a powerful tool that can be used by diabetes care providers and parents to manage insulin pump therapy in children and to improve glycemic control, especially in states with a large rural population

    EpiChIP: gene-by-gene quantification of epigenetic modification levels

    Get PDF
    The combination of chromatin immunoprecipitation with next-generation sequencing technology (ChIP-seq) is a powerful and increasingly popular method for mapping proteinā€“DNA interactions in a genome-wide fashion. The conventional way of analyzing this data is to identify sequencing peaks along the chromosomes that are significantly higher than the read background. For histone modifications and other epigenetic marks, it is often preferable to find a characteristic region of enrichment in sequencing reads relative to gene annotations. For instance, many histone modifications are typically enriched around transcription start sites. Calculating the optimal window that describes this enrichment allows one to quantify modification levels for each individual gene. Using data sets for the H3K9/14ac histone modification in Th cells and an accompanying IgG control, we present an analysis strategy that alternates between single gene and global data distribution levels and allows a clear distinction between experimental background and signal. Curve fitting permits false discovery rate-based classification of genes as modified versus unmodified. We have developed a software package called EpiChIP that carries out this type of analysis, including integration with and visualization of gene expression data

    Isoform-selective induction of human p110Ī“ PI3K expression by TNFĪ±: identification of a new and inducible PIK3CD promoter

    Get PDF
    PI3Ks (phosphoinositide 3-kinases) are signalling molecules and drug targets with important biological functions, yet the regulation of PI3K gene expression is poorly understood. Key PI3Ks are the class IA PI3Ks that consist of a catalytic subunit (p110Ī±, p110Ī² and p110Ī“) in complex with a p85 regulatory subunit. Whereas p110Ī± and p110Ī² are ubiquitously expressed, high levels of p110Ī“ are mainly found in white blood cells, with most non-leucocytes expressing low levels of p110Ī“. In the present paper we report that TNFĪ± (tumour necrosis factor Ī±) stimulation induces p110Ī“ expression in human ECs (endothelial cells) and synovial fibroblasts, but not in leucocytes, through transcription start sites located in a novel promoter region in the p110Ī“ gene (PIK3CD). This promoter is used in all cell types, including solid tumour cell lines that express p110Ī“, and is activated by TNFĪ± in ECs and synovial fibroblasts. We further present a detailed biochemical and bioinformatic characterization of p110Ī“ gene regulation, demonstrating that PIK3CD has distinct promoters, some of which can be dynamically activated by pro-inflammatory mediators. This is the first molecular identification of a PI3K promoter under the control of acute extracellular stimulation

    Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir

    Get PDF
    Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual microbial taxa, microbial communities, and metagenomic assemblages. AncientMetagenomeDir (archived at https://doi.org/10.5281/zenodo.3980833) is a collection of indices of published genetic data deriving from ancient microbial samples that provides basic, standardised metadata and accession numbers to allow rapid data retrieval from online repositories. These collections are community-curated and span multiple sub-disciplines in order to ensure adequate breadth and consensus in metadata definitions, as well as longevity of the database. Internal guidelines and automated checks to facilitate compatibility with established sequence-read archives and term-ontologies ensure consistency and interoperability for future meta-analyses. This collection will also assist in standardising metadata reporting for future ancient metagenomic studies.Competing Interest StatementThe authors have declared no competing interest.Background & Summary Methods - Repository Structure - Data Acquisition - Data Validation Data Records Technical Validation Usage Note

    Histone Modifications at Human Enhancers Reflect Global Cell-Type-Specific Gene Expression

    Get PDF
    The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1, 2, 3, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome4, 5, 6. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression

    Prevalent Multimorbidity Combinations Among Middle-Aged and Older Adults Seen in Community Health Centers

    Get PDF
    BACKGROUND: Multimorbidity (ā‰„ā€‰2 chronic diseases) is associated with greater disability and higher treatment burden, as well as difficulty coordinating self-management tasks for adults with complex multimorbidity patterns. Comparatively little work has focused on assessing multimorbidity patterns among patients seeking care in community health centers (CHCs). OBJECTIVE: To identify and characterize prevalent multimorbidity patterns in a multi-state network of CHCs over a 5-year period. DESIGN: A cohort study of the 2014-2019 ADVANCE multi-state CHC clinical data network. We identified the most prevalent multimorbidity combination patterns and assessed the frequency of patterns throughout a 5-year period as well as the demographic characteristics of patient panels by prevalent patterns. PARTICIPANTS: The study included data from 838,642 patients agedā€‰ā‰„ā€‰45 years who were seen in 337 CHCs across 22 states between 2014 and 2019. MAIN MEASURES: Prevalent multimorbidity patterns of somatic, mental health, and mental-somatic combinations of 22 chronic diseases based on the U.S. Department of Health and Human Services Multiple Chronic Conditions framework: anxiety, arthritis, asthma, autism, cancer, cardiac arrhythmia, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), congestive heart failure, coronary artery disease, dementia, depression, diabetes, hepatitis, human immunodeficiency virus (HIV), hyperlipidemia, hypertension, osteoporosis, post-traumatic stress disorder (PTSD), schizophrenia, substance use disorder, and stroke. KEY RESULTS: Multimorbidity is common among middle-aged and older patients seen in CHCs: 40% have somatic, 6% have mental health, and 24% have mental-somatic multimorbidity patterns. The most frequently occurring pattern across all years is hyperlipidemia-hypertension. The three most frequent patterns are various iterations of hyperlipidemia, hypertension, and diabetes and are consistent in rank of occurrence across all years. CKD-hyperlipidemia-hypertension and anxiety-depression are both more frequent in later study years. CONCLUSIONS: CHCs are increasingly seeing more complex multimorbidity patterns over time; these most often involve mental health morbidity and advanced cardiometabolic-renal morbidity

    More than sense of place? Exploring the emotional dimension of rural tourism experiences

    Get PDF
    It is widely suggested that participation in rural tourism is underpinned by a sense of rural place or ā€œruralityā€. However, although nature and the countryside have long been recognised as a source of spiritual or emotional fulfilment, few have explored the extent to which tourism, itself often claimed to be a sacred experience, offers an emotional/spiritual dimension in the rural context. This paper addresses that literature gap. Using in-depth interviews with rural tourists in the English Lake District, it explores the extent to which, within respondentsā€™ individual understanding of spirituality, a relationship exists between sense of place and deeper, emotional experiences and, especially, whether participation in rural tourism may induce spiritual or emotional responses. The research revealed that all respondents felt a strong attachment to the Lake District; similarly, and irrespective of their openness to spirituality, engaging in rural tourism activities resulted in highly emotive experiences for all respondents, the description/interpretation of such experiences being determined by individual ā€œbeliefsā€. However, sense of place was not a prerequisite to emotional or spiritual experiences. Being in and engaging with the landscape ļæ½ effectively becoming part of it ļæ½ especially through physical activity is fundamental to emotional responses

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells

    Get PDF
    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription

    Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer

    Get PDF
    The estrogen receptor (ER)Ī± drives growth in two-thirds of all breast cancers. Several targeted therapies, collectively termed endocrine therapy, impingeonestrogen-induced ERĪ± activationtoblock tumor growth. However, half ofERĪ±-positive breast cancers are tolerant or acquire resistance to endocrine therapy. We demonstrate that genome-wide reprogramming of the chromatin landscape, defined by epigenomic maps for regulatory elements or transcriptional activation and chromatin openness, underlies resistance to endocrine therapy. This annotation reveals endocrine therapy-response specific regulatory networks where NOTCH pathway is overactivated in resistant breast cancer cells, whereas classical ERĪ± signaling is epige-netically disengaged. Blocking NOTCH signaling abrogates growth of resistant breast cancer cells. Its activation state in primary breast tumors is a prognostic factor of resistance in endocrine treated patients. Overall, our work demonstrates that chromatin landscape reprogramming underlies changes in regulatory networks driving endocrine therapy resistance in breast cancer
    • ā€¦
    corecore