182 research outputs found
Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections
It is well accepted within the scientific community that a large ensemble of different projections is required to achieve robust climate change information for a specific region. For this purpose we have compiled a state-of-the-art multi-model multi-scenario ensemble of global and regional precipitation projections. This ensemble combines several global projections from the CMIP3 and CMIP5 databases, along with some recently downscaled regional CORDEX-Africa projections. Altogether daily precipitation data from 77 different climate change projections is analysed; separated into 31 projections for a high and 46 for a low emission scenario. We find a robust indication that, independent of the underlying emission scenario, annual total precipitation amounts over the central African region are not likely to change severely in the future. However some robust changes in precipitation characteristics, like the intensification of heavy rainfall events as well as an increase in the number of dry spells during the rainy season are projected for the future. Further analysis shows that over some regions the results of the climate change assessment clearly depend on the size of the analyzed ensemble. This indicates the need of a "large-enough" ensemble of independent climate projections to allow for a reliable climate change assessment. © 2013 The Author(s)
Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe
BACKGROUND: A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change.
RESULTS: Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15-20% of the climate change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The probability of dry days and warm temperature extremes would decrease.
CONCLUSIONS: Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this case study with a hypothetical land cover change can contribute to the assessment of the role of forests in adapting to climate change. Thus they can build an important basis of the future forest policy
A multi-model climate response over tropical Africa at +2 °C
The impact of a +2 °C global warming on temperature and precipitation over tropical Africa is examined, based on an ensemble of 12 regional climate model scenario simulations. These 12 scenarios are re-phased so that they all correspond to the same global warming of 2 °C with respect to pre-industrial conditions. The continental temperature increase is above the global average. If heat waves are defined with the same temperature threshold in the reference climate and in the scenario, their frequency increases by a factor of 10. When the temperature threshold is adapted to future conditions, there is still a slight increase in frequency. The average precipitation does not show a significant response, due to model-to-model spread. However two compensating phenomena occur, which are robust among the models: (a) the number of rain days decreases whereas the precipitation intensity increases, and (b) the rain season occurs later during the year with less precipitation in early summer and more precipitation in late summer. Simulated daily temperature and precipitation data are combined in two impact models, one for the hydrology of the Nile and Niger basins, one for the food security of the different countries. They show that the main feature of the climate change is not a continuous trend signal, but an alternation of dry and wet decadal to multidecadal episodes
Identifying climate change information needs for the himalayan region: Results from the GLACINDIA Stakeholder Workshop and Training Program
Here we present results of a workshop designed to bring together stakeholders from different states of the Indian side of the Himalayan arc and an international group of climate scientists in order to discuss how climate change research for this region can be tailored toward the needs of local communities. The stakeholder workshop was jointly organized by the Jawaharlal Nehru University (JNU), New Delhi, India, and the Climate Service Center 2.0, Hamburg, Germany, within the framework of the multidisciplinary international research project GLACINDIA. The project focuses on the water-related effects of changes in glacier mass balance and river runoff in western Himalayas. Given the research focus of the GLACINDIA project, the initial focus of the workshop was on glacier-related hydrological information. During stakeholder interactions the resulting discussion covered a much broader range of urgent climate change information needs for the Himalayan region.publishedVersio
Representation of extreme precipitation events leading to opposite climate change signals over the Congo Basin
We investigate the reasons for the opposite climate change signals in precipitation between the regional climate model REMO and its driving earth system model MPI-ESM over the greater Congo region. Three REMO simulations following three RCP scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) are conducted, and it is found that the opposite signals, with REMO showing a decrease and MPI-ESM an increase in the future precipitation, diverge strongly as we move from a less extreme to a more extreme scenario. It has been shown that REMO simulates a much higher number of extreme rainfall events than MPI-ESM. This results in higher surface runoff and thus less soil infiltration, which leads to lower amounts of soil moisture in REMO. This further leads to less moisture recycling via evapotranspiration, which in turn results in less precipitation over the region. In the presence of a strong radiative forcing, the hydrological cycle becomes less intense in REMO and a downward trend in hydrological variables is observed. Contrary to this, the higher amounts of soil-moisture due to the lack of extreme rainfall events in MPI-ESM enhance the hydrological cycle. In the presence of strong radiative forcing, higher amounts of soil moisture result in increased evapotranspiration which in turn results in the higher amount of precipitation. It is concluded that the land-atmosphere coupling over the Congo region is very sensitive to the change in soil moisture amounts, which is likely to play a major role in global warming conditions. Therefore, adequate and improved representation of soil processes in climate models is essential to study the effects of climate change. However, the better representation of extreme rainfall events in REMO compared to MPI-ESM can be regarded as an added value of the model
Assessing the transferability of the regional climate model REMO to different COordinated Regional Climate Downscaling EXperiment (CORDEX) Regions
The transferability of the regional climate model REMO with a standard setup over different regions of the world has been evaluated. The study is based on the idea that the modeling parameters and parameterizations in a regional climate model should be robust to adequately simulate the major climatic characteristic of different regions around the globe. If a model is not able to do that, there might be a chance of an âovertuningâ to the âhome-regionâ, which means that the model physics are tuned in a way that it might cover some more fundamental errors, e.g., in the dynamics. All simulations carried out in this study contribute to the joint effort by the international regional downscaling community called COordinated Regional climate Downscaling EXperiment (CORDEX). REMO has been integrated over six CORDEX domains forced with the so-called perfect boundary conditions obtained from the global reanalysis dataset ERA-Interim for the period 1989 to 2008. These six domains include Africa, Europe, North America, South America, West Asia and the Mediterranean region. Each of the six simulations was conducted with the identical model setup which allows investigating the transferability of a single model to regions with substantially different climate characteristics. For the consistent evaluation over the different domains, a new evaluation framework is presented by combining the Köppen-Trewartha climate classification with temperature-precipitation relationship plots and a probability density function (PDF) skill score method. The evaluation of the spatial and temporal characteristics of simulated precipitation and temperature, in comparison to observational datasets, shows that REMO is able to simulate the mean annual climatic features over all the domains quite reasonably, but still some biases remain. The regions over the Amazon and near the coast of major upwelling regions have a significant warm bias. Wet and dry biases appear over the mountainous regions and East Africa, respectively. The temperature over South America and precipitation over the tundra and highland climate of West Asia are misrepresented. The probable causes leading to these biases are discussed and ideas for improvements are suggested. The annual cycle of precipitation and temperature of major catchments in each domain are also well represented by REMO. The model has performed well in simulating the inter- and intra-seasonal characteristics of different climate types in different regions. Moreover, the model has a high ability in representing the general characteristics of different climate types as measured by the probability density function (PDF) skill score method. Although REMO seems to perform best over its home domain in Europe (domain of development and testing), the model has simulated quite well the climate characteristics of other regions with the same set of parameterization options. Therefore, these results lead us to the conclusion that REMO is well suited for long-term climate change simulations to examine projected future changes in all these regions
The role of forests in mitigating climate change - A case study for Europe
A regional-scale case study has been carried out to assess the possible climatic benefits of forest cover increase in Europe. For the end of the 21st century (2071-2090) it has been investigated, whether the projected climate change could be reduced assuming potential afforestation of the continent. The magnitude of the biogeophysical effects of enhanced forest cover on temperature and precipitation means and extremes have been analyzed relative to the magnitude of the climate change signal applying the regional climate model REMO. The simulation results indicate that in the largest part of the temperate zone potential afforestation may reduce the projected climate change through cooler and moister conditions, thus could contribute to the mitigation of the projected climate change for the entire summer period. The largest relative effect of forest cover increase can be expected in northern Germany, Poland and Ukraine. Here, the projected precipitation decrease could be fully compensated, the temperature increase could be relieved by up to 0.5 degrees C, and the probability of extremely warm and dry days could be reduced. Results can help to identify the areas, where forest cover increase could be the most effective from climatic point of view. Thus they can build an important basis of the future adaptation strategies and forest policy
Age, extent and carbon storage of the central Congo Basin peatland complex
Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3âmetres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9âmetres and a median depth of 2.0âmetres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6âĂâ10(15)âgrams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation
Fog and Dew as Potable Water Resources: Maximizing Harvesting Potential and Water Quality Concerns
Fog and dew are often viewed as economic nuisances causing significant financial losses in the transportation industry and agricultural sector. However, they are also critical components of the hydrological cycle, especially in water scarce environments. Water scarcity is one of the major threats to mankind in the 21st century, and this can be due to development pressures, pollution, and/or expanding populations. In water scarce environments, fog and dew represent potentially exploitable ancillary water resources that could ameliorate the water scarce situation, if efficiently harvested. However, two important issues are often overlooked in relation to fog and dew harvesting and potability. First, current fog and dew harvesting technologies are low yielding with great potential for improvements. Second and more importantly, the potability of these water resources is often based on simple analyses that often omit trace metal and biological analyses. The few studies that report trace metal or biological measurements suggest elevated trace metal concentrations or biological contamination that could be of concern to public health. We discuss the potential for fog and dew harvesting technologies and the need for trace metal and biological analyses of these waters before use
- âŠ