11 research outputs found

    The optical rebrightening of GRB100814A: an interplay of forward and reverse shocks?

    Get PDF
    We present a wide dataset of -ray, X-ray, UVOIR, and radio observations of the Swift GRB100814A. At the end of the slow decline phase of the X-ray and optical afterglow, this burst shows a sudden and prominent rebrightening in the optical band only, followed by a fast decay in both bands. The optical rebrightening also shows chromatic evolution. Such a puzzling behaviour cannot be explained by a single component model. We discuss other possible interpretations, and we find that a model that incorporates a long-lived reverse shock and forward shock fits the temporal and spectral properties of GRB100814 the best

    The early- and late-time spectral and temporal evolution of ORB 050716

    Full text link
    We report on a comprehensive set of observations of gamma-ray burst 050716, detected by the Swift satellite and subsequently followed-up rapidly in X-ray, optical and near-infrared (NIR) wavebands. The prompt emission is typical of long-duration bursts, with two peaks in a time interval of T90= 68 s (15–350 keV). The prompt emission continues at lower flux levels in the X-ray band, where several smaller flares can be seen on the top of a decaying light curve that exhibits an apparent break around 220 s post-trigger. This temporal break is roughly coincident with a spectral break. The latter can be related to the extrapolated evolution of the break energy in the prompt γ-ray emission, and is possibly the manifestation of the peak flux break frequency of the internal shock passing through the observing band. A possible 3σ change in the X-ray absorption column is also seen during this time. The late-time afterglow behaviour is relatively standard, with an electron distribution power-law index of p= 2; there is no notable temporal break out to at least 10 d. The broad-band optical/NIR to X-ray spectrum indicates a redshift of z≳ 2 for this burst, with a host-galaxy extinction value of EB−V≈ 0.7 that prefers a small magellanic cloud (SMC)-like extinction curve

    The circumburst environment of a FRED GRB: Study of the prompt emission and X-ray/optical afterglow of GRB 051111

    Full text link
    Aims.We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB 051111 and discuss its properties in the context of current fireball models. Methods.The detection of GRB 051111 by the Burst Alert Telescope on-board Swift triggered early BVRi' observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. Results.The prompt γ\gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with α1=0.35{\alpha}_1=0.35 to α2=1.35{\alpha}_2=1.35 and a break time around 12 min after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the γ\gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some α\alpha elements such as oxygen, [O/Zn] = 0.7 ±\pm 0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 min after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium

    The extreme, red afterglow of GRB 060923A: Distance or dust?

    Full text link
    Gamma-ray bursts (GRBs) are powerful probes of the early Universe, but locating and identifying very distant GRBs remain challenging. We report here the discovery of the K-band afterglow of Swift GRB 060923A, imaged within the first hour post-burst, and the faintest so far found. It was not detected in any bluer bands to deep limits, making it a candidate very high-z burst (z≳ 11). However, our later-time optical imaging and spectroscopy reveal a faint galaxy coincident with the GRB position which, if it is the host, implies a more moderate redshift (most likely z≲ 2.8) and therefore that dust is the likely cause of the very red-afterglow colour. This being the case, it is one of the few instances so far found of a GRB afterglow with high-dust extinction

    Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO

    Get PDF
    The first direct detection of gravitational waves was made in late 2015 with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events during the first science run, and many facilities were engaged in the search for counterparts. No counterparts were identified, which is in line with expectations given that the events were classified as black hole - black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from September 2015 to January 2016. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (~degrees) fields-of-view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae

    Anatomy of a dark burst - The afterglow of GRB 060108

    Get PDF
    We present a multiwavelength study of GRB 060108 – the 100th gamma-ray burst discovered by Swift. The X-ray flux and light curve (three segments plus a flare) detected with the X-ray Telescope are typical of Swift long bursts. We report the discovery of a faint optical afterglow detected in deep BVRi′-band imaging obtained with the Faulkes Telescope North beginning 2.75 min after the burst. The afterglow is below the detection limit of the Ultraviolet/Optical Telescope within 100 s of the burst, while is evident in K-band images taken with the United Kingdom Infrared Telescope 45 min after the burst. The optical light curve is sparsely sampled. Observations taken in the R and i′ bands can be fitted either with a single power-law decay in flux, F(t) ∝t−α where α= 0.43 ± 0.08, or with a two-segment light curve with an initial steep decay α1 < 0.88 ± 0.2, flattening to a slope α2∼ 0.31 ± 0.12. A marginal evidence for rebrightening is seen in the i′ band. Deep R-band imaging obtained ∼12 d post-burst with the Very Large Telescope reveals a faint, extended object (R∼ 23.5 mag) at the location of the afterglow. Although the brightness is compatible with the extrapolation of the slow decay with index α2, significant flux is likely due to a host galaxy. This implies that the optical light curve had a break before 12 d, akin to what observed in the X-rays. We derive the maximum photometric redshift z < 3.2 for GRB 060108. We find that the spectral energy distribution at 1000 s after the burst, from the optical to the X-ray range, is best fitted by a simple power law, Fν∝ν−β, with βOX= 0.54 and a small amount of extinction. The optical to X-ray spectral index (βOX) confirms GRB 060108 to be one of the optically darkest bursts detected. Our observations rule out a high redshift as the reason for the optical faintness of GRB 060108. We conclude that a more likely explanation is a combination of an intrinsic optical faintness of the burst, a hard optical to X-ray spectrum and a moderate amount of extinction in the host galaxy

    Mass and metallicity scaling relations of high redshift star-forming galaxies selected by GRBs

    Full text link
    We present a comprehensive study of the relations between gas kinematics, metallicity, and stellar mass in a sample of 82 GRB-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift and find the correlation derived from emission lines to have a significantly smaller scatter compared to that found using absorption lines. Using 33 GRB hosts with measured stellar mass and metallicitiy, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2M10^{8.2} M_{\odot} to 1011.1M10^{11.1} M_{\odot} and a redshift range of z0.33.4 z\sim 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error-bar on the metallicity measurements of the GRB sample and also the scatter on the MZ relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions

    Multi-wavelength afterglow observations of the high redshift GRB 050730

    Get PDF
    Context.GRB 050730 is a long duration high-redshift burst (z=3.967) that was discovered by Swift. The afterglow shows variability and was well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730 including observations covering the wavelength range from the millimeter to X-rays. Aims.We use multi-wavelength afterglow data to understand the complex temporal and spectral decay properties of this high redshift burst. Methods.Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r', R, i', I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 h post-burst in the B, V, R, I, J and K bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. Results.The early afterglow shows variability at early times and the slope steepens at 0.1 days (8.6 ks) in the B, V, r', R, i', I, J and K passbands. The early afterglow light curve decayed with a powerlaw slope index α1=0.60±0.07\alpha_1 = -0.60\pm0.07 and subsequently steepened to α2=1.71±0.06\alpha_2 = -1.71\pm0.06 based on the R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to theoretical predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw decay with αx=2.5±0.15\alpha_x = -2.5\pm0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 h after the burst. An electron energy index, p, of ~2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and implies that the synchrotron cooling frequency νc\nu_{\rm c} is above the X-ray band

    Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts

    Get PDF
    We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the NV 1238,1242 line transitions, but we also discuss other high-ionization lines such as OVI, CIV and SiIV. We find no correlation between the column density of NV and the neutral gas properties such as metallicity, HI column density and dust depletion, however the relative velocity of NV, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of HI. This may be explained if the NV gas is part of an HII region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2-sigma significance) that the X-ray derived column density, N_H,X, may be correlated with the column density of NV, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where NV (and also OVI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow

    The luminous, massive and solar metallicity galaxy hosting the Swift gamma-ray burst, GRB 160804A at z = 0.737

    Get PDF
    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A atz = 0.737. Typically, GRBs are found in lowmass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M∗/ M) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = −21.94 mag, but find it to be dust-poor (E(B − V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gasphase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to <15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies
    corecore