1,840 research outputs found
Mantle formation, coagulation and the origin of cloud/core-shine: II. Comparison with observations
Many dense interstellar clouds are observable in emission in the near-IR,
commonly referred to as "Cloudshine", and in the mid-IR, the so-called
"Coreshine". These C-shine observations have usually been explained with grain
growth but no model has yet been able to self-consistently explain the dust
spectral energy distribution from the near-IR to the submm. We want to
demonstrate the ability of our new core/mantle evolutionary dust model THEMIS
(The Heterogeneous dust Evolution Model at the IaS), which has been shown to be
valid in the far-IR and submm, to reproduce the C-shine observations. Our
starting point is a physically motivated core/mantle dust model. It consists of
3 dust populations: small aromatic-rich carbon grains; bigger core/mantle
grains with mantles of aromatic-rich carbon and cores either made of amorphous
aliphatic-rich carbon or amorphous silicate. We assume an evolutionary path
where these grains, when entering denser regions, may first form a second
aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon
from the gas phase), second coagulate together to form large aggregates, and
third accrete gas phase molecules coating them with an ice mantle. To compute
the corresponding dust emission and scattering, we use a 3D Monte-Carlo
radiative transfer code. We show that our global evolutionary dust modelling
approach THEMIS allows us to reproduce C-shine observations towards dense
starless clouds. Dust scattering and emission is most sensitive to the cloud
central density and to the steepness of the cloud density profile. Varying
these two parameters leads to changes, which are stronger in the near-IR, in
both the C-shine intensity and profile. With a combination of aliphatic-rich
mantle formation and low-level coagulation into aggregates, we can
self-consistently explain the observed C-shine and far-IR/submm emission
towards dense starless clouds.Comment: Paper accepted for publication in A&A with companion paper "Mantle
formation, coagulation and the origin of cloud/core-shine: I. Dust scattering
and absorption in the IR", A.P Jones, M. Koehler, N. Ysard, E. Dartois, M.
Godard, L. Gavila
Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA
We report the first detection of interstellar mercapto radicals, obtained
along the sight-line to the submillimeter continuum source W49N. We have used
the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 -
3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant
spectrum reveals SH absorption in material local to W49N, as well as in
foreground gas, unassociated with W49N, that is located along the sight-line.
For the foreground material at velocities in the range 37 - 44 km/s with
respect to the local standard of rest, we infer a total SH column density ~ 2.6
E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and
yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio
is much smaller than that predicted by standard models for the production of SH
and H2S in turbulent dissipation regions and shocks, and suggests that the
endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along
with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse
molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT
special issue
Toxoplasmose canine en République Centrafricaine
Aucun résumé disponible en français
High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line
The chemical composition of the interstellar medium is determined by gas
phase chemistry, assisted by grain surface reactions, and by shock chemistry.
The aim of this study is to measure the abundance of the hydroxyl radical (OH)
in diffuse spiral arm clouds as a contribution to our understanding of the
underlying network of chemical reactions. Owing to their high critical density,
the ground states of light hydrides provide a tool to directly estimate column
densities by means of absorption spectroscopy against bright background
sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5
THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius
spiral arm. OH column densities in the spiral arm clouds along the sightlines
to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2,
which corresponds to a fractional abundance of 10^-7 to 10^-8, which is
comparable to that of H_2O. The absorption spectra of both species have similar
velocity components, and the ratio of the derived H_2O to OH column densities
ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of
^18OH
Spatial distribution of far-infrared rotationally excited CH<sup>+</sup> and OH emission lines in the Orion Bar photodissociation region
Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500−1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation.Aims. Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms.Methods. We present spatially sampled maps of the CH+ J = 3–2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+ , O and H2, and tracers of warm and dense gas (high-
J CO). We assess the spatial variation of the CH+ J = 2–1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations.Results. The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides with a bright young object, proplyd 244–440, which shows that OH can be an excellent tracer of UV-irradiated dense gas.Conclusions. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J = 3–2 excitation processes. The excitation of the OH Λ doublet at 84 μm is mainly sensitive to the temperature and density
SUSTAINABLE DEVELOPMENT AND THE PROCESS OF JUSTIFYING CHOICES IN A CONTROVERSIAL UNIVERSE
All in all, neither the path of the generic principle nor that of the reduction to existing principles would appear to be fully satisfactory as the basis for establishing the legitimacy of sustainable development or as a way of making sustainability a principle of legitimacy by its own. We should probably resign ourselves to seeing in this idea a composite construction, still striving towards the formation of a new "superior common principle", without this principle yet being able to be completely clarified and validated. What we have here is an example of the sort of "compromise" described by Boltanski and Thévenot (1991, p.338): "In the compromise, the participants abandon the idea of clarifying the principle of their agreement but endeavour to maintain a frame of mind aiming at the common good." If we want to consolidate the compromise developing around sustainability, it would be well advised to seek the support of tests using well-formed objects. To this end, steps should be taken to move the emphasis away from long-term and unknowable sustainability requirements and closer to secondbest criteria focused on the transitional developments and possible risks of intentional human action, the ways of managing the linking of the different temporalities in play -- as regards the biophysical phenomena, their understanding and the main worlds of legitimacy (Godard, 1992) -- and the introduction of deliberation within the present generations as to what they feel best describes their identity, those things they would like to pass on
- …