277 research outputs found

    Specificity of dimer formation in tropomyosins: influence of alternatively spliced exons on homodimer and heterodimer assembly

    Get PDF
    Tropomyosins consist of nearly 100% alpha-helix and assemble into parallel and in-register coiled-coil dimers. In vitro it has been established that nonmuscle as well as native muscle tropomyosins can form homodimers. However, a mixture of muscle alpha and beta tropomyosin subunits results in the formation of the thermodynamically more stable alpha/beta heterodimer. Although the assembly preference of the muscle tropomyosin heterodimer can be understood thermodynamically, the presence of multiple tropomyosin isoforms expressed in nonmuscle cells points toward a more complex principle for determining dimer formation. We have investigated the dimerization of rat tropomyosins in living cells by the use of epitope tagging with a 16-aa sequence of the influenza hemagglutinin. Employing transfection and immunoprecipitation techniques, we have analyzed the dimers formed by muscle and nonmuscle tropomyosins in rat fibroblasts. We demonstrate that the information for homo- versus heterodimerization is contained within the tropomyosin molecule itself and that the information for the selectivity is conferred by the alternatively spliced exons. These results have important implications for models of the regulation of cytoskeletal dynamics

    Calponin Developmental isoforms and a low molecular weight variant

    Get PDF
    AbstractTwo-dimensional gel analysis of basic proteins in developing human smooth muscle identifies calponin as a prominent marker of the differentiated phenotype. Adult tissue (human and mouse) typically expresses up to four calponin isoforms, three of which appear sequentially during fetal development: adult myometrial cells express the same three isoforms in primary culture in vitro and these are down-regulated, in reverse order, during the subsequent modulation of phenotype. Monospecific, polyclonal antibodies against calponin identify a lower molecular weight variant of calponin (L-calponin) that is strongly and specifically expressed in adult smooth muscles of the human urogenital tract. L-Calponin is down-regulated in benign smooth muscle derived tumors (leiomyoma) and is not expressed in primary cultures of normal uterine tissue

    80 THERAPEUTIC EFFECTS OF FIBROBLAST GROWTH FACTOR-18 IN A RAT MODEL OF ESTABLISHED OSTEOARTHRITIS

    Get PDF

    Crossing the chasm: a 'tube-map' for agent-based social simulation of policy scenarios in spatially-distributed systems

    Get PDF
    Agent based models (ABMs) simulate actions and interactions of autonomous agents/groups and their effect on systems as a whole, accounting for learning without assuming perfect rationality or complete knowledge. ABMs are an increasingly popular approach to studying complex, spatially distributed socio-environmental systems, but have still to become an established approach in the sense of being one that is expected by those wanting to explore scenarios in such systems. Partly, this is an issue of awareness – ABM is still new enough that many people have not heard of it; partly, it is an issue of confidence – ABM has more to do to prove itself if it is to become a preferred method. This paper will identify advances in the craft and deployment of ABM needed if ABM is to become an accepted part of mainstream science for policy or stakeholders. The conduct of ABM has, over the last decade, seen a transition from using abstracted representations of systems (supporting theory-led thought experiments) to more accessible representations derived empirically (to deliver more applied analysis). This has enhanced the perception of potential users of ABM outputs that the latter are salient and credible. Empirical ABM is not, however, a panacea, as it demands more computing and data resources, limiting applications to domains where data exist along with suitable environmental models where these are required. Further, empirical ABM is still facing serious questions of validation and the ontology used to describe the system in the first place. Using Geoffrey A. Moore’s Crossing the Chasm as a lens, we argue that the way ahead for ABM lies in identifying the niches in which it can best demonstrate its advantages, working with collaborators to demonstrate that it can deliver on its promises. This leads us to identify several areas where work is needed

    Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications.

    Get PDF
    Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation

    A Cell Motility Screen Reveals Role for MARCKS-Related Protein in Adherens Junction Formation and Tumorigenesis

    Get PDF
    Invasion through the extracellular matrix (ECM) is important for wound healing, immunological responses and metastasis. We established an invasion-based cell motility screen using Boyden chambers overlaid with Matrigel to select for pro-invasive genes. By this method we identified antisense to MARCKS related protein (MRP), whose family member MARCKS is a target of miR-21, a microRNA involved in tumor growth, invasion and metastasis in multiple human cancers. We confirmed that targeted knockdown of MRP, in both EpRas mammary epithelial cells and PC3 prostate cancer cells, promoted in vitro cell migration that was blocked by trifluoperazine. Additionally, we observed increased immunofluoresence of E-cadherin, β-catenin and APC at sites of cell-cell contact in EpRas cells with MRP knockdown suggesting formation of adherens junctions. By wound healing assay we observed that reduced MRP supported collective cell migration, a type of cell movement where adherens junctions are maintained. However, destabilized adherens junctions, like those seen in EpRas cells, are frequently important for oncogenic signaling. Consequently, knockdown of MRP in EpRas caused loss of tumorigenesis in vivo, and reduced Wnt3a induced TCF reporter signaling in vitro. Together our data suggest that reducing MRP expression promotes formation of adherens junctions in EpRas cells, allowing collective cell migration, but interferes with oncogenic β-catenin signaling and tumorigenesis

    International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19

    Get PDF
    STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight

    LRCH Proteins: A Novel Family of Cytoskeletal Regulators

    Get PDF
    Background: Comparative genomics has revealed an unexpected level of conservation for gene products across the evolution of animal species. However, the molecular function of only a few proteins has been investigated experimentally, and the role of many animal proteins still remains unknown. Here we report the characterization of a novel family of evolutionary conserved proteins, which display specific features of cytoskeletal scaffolding proteins, referred to as LRCHs. Principal Findings: Taking advantage of the existence of a single LRCH gene in flies, dLRCH, we explored its function in cultured cells, and show that dLRCH act to stabilize the cell cortex during cell division. dLRCH depletion leads to ectopic cortical blebs and alters positioning of the mitotic spindle. We further examined the consequences of dLRCH deletion throughout development and adult life. Although dLRCH is not essential for cell division in vivo, flies lacking dLRCH display a reduced fertility and fitness, particularly when raised at extreme temperatures. Conclusion/Significance: These results support the idea that some cytoskeletal regulators are important to buffer environmental variations and ensure the proper execution of basic cellular processes, such as the control of cell shape

    Targeted Development of Registries of Biological Parts

    Get PDF
    BACKGROUND: The design and construction of novel biological systems by combining basic building blocks represents a dominant paradigm in synthetic biology. Creating and maintaining a database of these building blocks is a way to streamline the fabrication of complex constructs. The Registry of Standard Biological Parts (Registry) is the most advanced implementation of this idea. METHODS/PRINCIPAL FINDINGS: By analyzing inclusion relationships between the sequences of the Registry entries, we build a network that can be related to the Registry abstraction hierarchy. The distribution of entry reuse and complexity was extracted from this network. The collection of clones associated with the database entries was also analyzed. The plasmid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed experimentally but unexpected discrepancies have also been identified. CONCLUSIONS/SIGNIFICANCE: Organizational guidelines are proposed to help design and manage this new type of scientific resources. In particular, it appears necessary to compare the cost of ensuring the integrity of database entries and associated biological samples with their value to the users. The initial strategy that permits including any combination of parts irrespective of its potential value leads to an exponential and economically unsustainable growth that may be detrimental to the quality and long-term value of the resource to its users
    corecore