134 research outputs found

    Uncharacteristic harmonics in converters and their minimization through firing angle modulation

    Get PDF
    Imperial Users onl

    Recovery of Photovoltaic Module Heat Using Thermoelectric Effect

    Get PDF
    The growing demand for renewable energy sources, in particular for solar technologies, requires more detailed studies to increase power and efficiency. Among them, thermoelectric energy conversion is a well-known technology used for decades including solar thermal generators (STEG), radioisotope thermoelectric generators (RTG), automotive thermoelectric generators (ATG) and thermoelectric generators (TEG). This chapter aims to demonstrate that the thermoelectric effect (Seebeck effect) can be used to harness the thermal energy retained in photovoltaic panels to increase their overall efficiency with its direct conversion into electrical energy and vice versa. It is also observed that solar radiation can be converted directly into electric energy, as in photovoltaic modules, or yet can be converted directly into electricity, as in thermoelectric modules. It is emphasised that although the energy conversion by thermoelectric effect still has low electrical efficiency, this source is characterised by a high degree of reliability, low maintenance, appreciable durability and absence of moving parts, and it allows generating electric energy through recovery of the thermal energy from several industrial processes. At the end of this chapter is presented a case study related to the thermal energy absorbed by a polycrystalline photovoltaic module to illustrate their increased efficiency and power in thermoelectric-photovoltaic cogeneration

    Future Renewable Energy Communities Based Flexible Power Systems

    Get PDF
    This paper presents a new holistic approach that combines solutions for the future power systems. It describes clearly how solar energy is definitely the best outlet for a clean and sustainable planet, either due to their use in both vertical (V) or horizontal (H) forms such as: hydroelectric V&H, wind V&H, thermo-oceanic V&H, water movement sea V&H (tides and waves), solar thermoelectric, PV, and surface geothermal energy. New points of view and simple formulas are suggested to calculate the best characteristic intensity, storage means and frequency for specific places and how to manage the most well-known renewable sources of energy. Future renewables-based power system requires a huge amount of flexibility from different type and size of controllable energy resources. These flexible energy resources can be used in an aggregated manner to provide different ancillary services for the distribution and transmission network. In addition, flexible energy resources and renewable generation can be utilized in different kinds of energy communities and smart cities to benefit all stakeholders and society at the same time with future-proof market structures, new business models and management schemes enabling increased utilization of flexible energy resources. Many of the flexible energy resources and renewable-based generation units are also inverter-interfaced and therefore the authors present future power converter systems for energy sources as well as the latest age of multilevel converters.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Remote and Safe Monitoring of Magnetic Fields Produced by Transmission Lines in Areas of High Concentration of Lightning Strokes

    Get PDF
    Monitoring of magnetic and electric fields in high voltage transmission lines (HVTL) of power plants and substations (SEs) is contemplated by Brazilian Regulatory Standard 616/2014. The measurement procedures of the magnetic and electric fields in SEs must follow a methodology in case of continuous field monitoring of the power equipment where it is common lightning stroke incidences. These monitoring procedures must be carried out in such a way that the recording of electromagnetic fields is done without necessity of exposuring the technical team to irradiation from the equipment and machines generating electrical power. This paper describes a prototype which is able to produce data at a specified safe distance from the irradiating area. The experimental recorded data was acquired, processed, compared and analyzed in areas of more intense radiation levels, acceptable levels and safe levels. This work aimed to establish basis of a technological innovation for the continuous recording of electromagnetic data, trying to cover the surroundings of transmission lines in urban environments, close to the generating units and substation installations wherever the highest levels of magnetic field could be found

    Parkinson’s Disease in a Patient with 22q11.2 Deletion Syndrome: The Relevance of Detecting Mosaicisms by Means of Cell-By-Cell Evaluation Techniques

    Get PDF
    We report the case of a male patient from an Ashkenazi Jewish ethnic group with a history of midline defects (congenital heart disease, high-arched palate and bifid uvula). At the age of 46 years, he came to our center complaining of resting tremor, and a neurological examination concluded Parkinson?s disease. As a part of his approach, genetic evaluation was performed. Fluorescence in-situ hybridization (FISH) confirmed a mosaicism of a 22q deletion in 24% of the analyzed blood cells. Also, immunohistochemical studies were performed on samples from the minor salivary glands using a SNCA antibody. Intense SNCA immunoreactive profiles were obtained for cells from the salivary glands of the patient. This is, to our knowledge, the first description of the association of amosaicism of a 22q11.2 microdeletion syndrome with Parkinson?s disease. Our findings suggest that, before excluding the involvement of the 22q11.2 deletion in the etiology of early-onset PD cases, the spectrum of evaluations should be extended to include more sensitive FISH analysis and immunohistochemical studies. The pathogenesis of early-onset PD in patients with 22q11.2 deletion syndrome remains unknown but, if elucidated, it may contribute to understanding the etiology of PD and ultimately to preventionand treatment strategies.Fil: Perandones, Claudia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Farini, Veronica Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro de Estudios en Salud y Medio Ambiente; ArgentinaFil: Pellene, L. A. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Sáenz Farret, Michel. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Cuevas, S. M. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Micheli, Federico. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Radrizzani Helguera, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro de Estudios en Salud y Medio Ambiente; Argentin

    Techno-economic assessment of CO2 quality effect on its storage and transport: CO2QUEST: An overview of aims, objectives and main findings

    Get PDF
    This paper provides an overview of the aims, objectives and the main findings of the CO2QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS

    Conductive-probe atomic force microscopy characterization of silicon nanowire

    Get PDF
    The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated

    The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice

    Get PDF
    Pancreatic β cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1 mice. In baseline conditions, P2Y1-mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1-mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1-mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion
    corecore