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ABSTRACT

Converter instability due to feedback control of the direct 

current can be analysed through the Describing Function Technique 

(d.f.). A previously written off-line digital computer program 

to evaluate the d.f. of 6-pulse converters was extended to analyse 

also 12-pulse converters and to include the effects of transformer 

saturation. The d.f. was obtained from harmonic analysis of the total 

d.c.-side and total a.c.-side currents associated with a valve firing 

angle modulating signal (m.s.). Theiesults from this program can be 

used to predict oscillations synchronized with the a.c. system voltage.

Such studies using d.f. techniques have shown that a m.s. 

applied to the control voltage has a profound effect on the d.c.- 

and a.c.-side uncharacteristic harmonic currents. These studies have 

also shown that presence of harmonic distortion in the a.c. busbar 

voltage causes distortion on the d.c. line current 'ripple and therefore 

affects the nature of the d.f. . One reason for such distortions 

is the valve assymmetrical firing pattern caused by the closed loop 

nature of constant current control. A second reason is that the 

d.c. current ripple is related to the a.c.-side harmonics even if 

no closed loop current control is prescribed.

A method of harmonic minimization based on approximate 

linear relationships between uncharacteristic harmonics and the m.s. 

was developed and implemented on a converter model.

A circuit to select,adjust and inject the m.s. into the 

control voltage connected to the output of the injection circuit



inhioits the m.s. injection during transients. This control feature 

is important because: a) it allows fast transient response of the 

control and b) it does not contribute to oscillatory behavior. A 

full set of analytical predictions and model tests using the 

injection circuit described above for m.s. of 50Rz, 100Hz and 

150Hz are presented.
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CHAPTER 1

INTRODUCTION

1.1 General

The direct current control feedback system used at present 

in h.v.d.c. converters could be the cause of oscillations which may 

or may not be synchronized to the a.c. system frequency^.

Synchronized oscillations result from a.c. system imperfections 

magnified by the feedback nature of the d.c. current loop. As a 

consequence, firing pulse variations occurs which in return cause 

magnification of the related a.c.-side and d.c.-side harmonics ^ ^

Power systems are intended to supply the consumers an 

acceptable sinusoidal voltage. Ideally, the voltage should be 

perfectly sinusoidal of constant amplitude and frequency. In practice, 

non_Hnear loads on the system cause various deviations from the 

ideal, notably on the waveform. Such distortions occur mainly at 

the "non-linear consumer" terminals due to harmonic voltage drops 

in the source impedance. Other consumers in the vicinity of the 

non-linear load may also be adversely affected.

A distorted current or voltage waveform can be represented 

under steady-state operation as a sum of a fundamental and a set of 

harmonic components. In power systems, opening or closure of linear 

or non-linear loads, cause often changes in the operating conditions, 

so that the harmonic analysis becomes restricted to conditions which 

should persist for a reasonable length of time ^ . Among the
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causes of harmonic generation are:

1) Transformer saturation or loads containing saturated 

iron cores;

2) Rectifying loads;

3) A.c. regulators.

Iron saturation causes large components of third and fifth 
[27 281harmonics1 r Rectifying loads contain a large second and fourth

harmonic component and even harmonics in general ^  ̂  ̂  .

Harmonic voltages may reach high levels if the harmonic 

currents pass through a parallel or series resonant circuit. Such 

harmonic magnifications may happen anywhere in the system depending 
on the network parameters [13,53]^

Harmonic distortion have undesirable consequences such as:

a)

b) 

<0

d)

e)

f)

reduction of the life of power capacitors due to 

an increased current through the capacitors; 
maloperation of protective devices [^5,45]. 

extra losses in a.c. motors ; 

maloperation of electronic equipment based on the 

voltage or current crossover of the supply voltage; 

interference in telephone system 

misleading readings of kWh meters.

Due to the seriousness of the problem, national and inter­

national recommendations have been established that-indicate the 
permissible levels of harmonic injection by consumers [40,50,54]^
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When non-linear loads likely to inject large levels of harmonic 

currents are installed, filters tuned to the "characteristic" harmonic 

frequencies are invariably installed as well. However, because of 

system imperfections uncharacteristic harmonics are also likely to 

be generated for which filters are not usually provided. Because of 

this, uncharacteristic harmonic generation could be a serious problem 

in terms of a.c. voltage distortion and possible converter instability.

1.2 Converter stability and .uncharacteristic harmonics -

review of literature

Hunting of a rectifier supplying a converter through a

transmission line under constant current control was first dealt 
r 291by BusemannL J who, in 1948, under some restrictive assumptions

found that hunting occurred at half the firing frequency. A formula

was derived for the critical equivalent resistance of the rectifier

under current control leading to instability.
r 301 ("31 321Bjaresten1- J and FallsideL * J modelled the rectifier 

as a pure sampler and were able to derive respectively a closed form 

and an infinite series for the critical gain of the closed-loop 

system leading to instability at half the firing frequency. Fall- 

side used the describing function to extend the instability studies 

for large disturbances at other subharmonics of the firing frequency 

using zero commutation angle and an infinite a.c.-busbar.

With the exception of Busemann, the other researchers
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viewed the controlled rectifier as a fast static amplifier rather

than the main piece of equipment for h.v.d.c. transmission.

Representation of the converter for stability studies,

involves important details such asthenon-zero commutation time, the

non-zero a.c. network impedance and the non infinite d.c.-line reactor 
Cl,38,39,55)

(34)Sucena Paiva and Freris developed a linearized discrete 

model of the converter to represent the intermitent control action 

of a converter with a finite commutation angle and infinite busbar.

The stability boundaries predicted by the model which used the 

Z-transform method of analysis, were successfully confirmed on a 

h.v.d.c. simulator. For high cut-off frequency of the control 

loop, this model predicts harmonic instability at half the firing 

frequency and fails to predict low frequency oscillations unrelated 

to the firing frequency when the control cut-off frequency is low.

These non synchronized frequencies may be developed under certain 

conditions and be sustained at values of the loop gain less then the 

critiwa.1 value due to the non-linear properties of the converter, 

and therefore cannot be predicted by a linearized model
Simulator tests using infinite busbar showed that other modes of harmonic

instability not predicted by the linearized model may also happen.
A more detailed representation of the converter is then

necessary to represent the a.c. busbar voltage as a dependent variable.

Parallel resonances and antiresonances may occur due to the high

quality factor of the filters connected to the converter busbar and

certain frequencies will be reduced or magnified according to the harmonic
Cl 3)impedance value encountered by the corresponding harmonic currents *
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Interaction between a.c.- and d.c.-side quantities and 

modulation and demodulation converter processes are other important 
aspects of harmonic interaction (5,6,48,51)^

Sucena Paiva and Freris (7,34,36) used sinusoidal carrier 

functions as an approximation of the full computational requirements to 

calculate the transfer function of a converter taking into account 
the effect of filter plus a.c. system impedance. Using this method, 

only the onset of instability can be predicted since frequency domain 

techniques are used with linearized models.

The decribing function- was also used by Sakurai et al 

to analyse a particular mode of harmonic instability detected on the 

Shin-Shinano frequency converter. A fundamental frequency oscillation 

on the d.c.-side and a second harmonic in the a.c.-side were observed.

This mode is likely to occur under d.c.-side resonance near to the 

fundamental frequency under a combined a.c.-side antiresonance 

between the 2nd and 3rd harmonic.
('49')Jotten et al y studying the influence of resonances on 

the d.c.-side and anti-resonances on the a.c.-side on the current 

controller, concluded that if the d.c. resonance and a.c. anti­

resonance frequencies are related by the modulating process controlled- 

loop, instability may occur with high gain and wide bandwidth controllers. 

The resulting oscillation would be close to one of the lowest harmonic 

orders.

Ferreira ^  developed a converter model capable of pre­

dicting oscillations synchronized with the a.c. system voltage for 

6-pulse converters. The Describing Function (d.f.) technique was 

used to evaluate the frequency response of the current control loop.

An off-line digital computer program was developed to perform the 

harmonic analysis of the a.c.- and d.c.-side currents. The resulting
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d.f. locus together with the frequency response of the linear elements 

of the control loop were used to predict oscillations synchronized with 

the a.c. system voltage. Extensive number of test results on a h.v.d.c. 

simulator were compared with the theoretical predictions and a 

satisfactory accuracy was obtained in nearly all cases. Transformer 

saturation and 12-pulse operation were not dealt in Ferreira's work.

1.3 Harmonics in h.v.d.c. converters - review of literature

Low commutating reactance with respect to the d.c. smoothing 

reactance, makes the converter act as a source of harmonic current from 

the a.c. point of view and as a source of harmonic voltage from the 

d.c. point of view. Reduction of some of these harmonics at the 

converter busbar may be achieved through a) increased number of pulses,

b) harmonic filters and c) harmonic injection.

The pulse number is determined by the number of phases 

available at the secondary of the converter transformer. For a balanced 

steady-state condition, the a.c.-side harmonics are of order "qp+l" 

(characteristic harmonics) where "q" is an integer and "p" is the pulse 

number whilst d.c.-side characteristic harmonics are of order "qp". In 

h.v.d.c. the pulse number is limited to 12 by a) problems of insulating 

the transformers to withstand the higher alternating voltages combined 

with the high direct voltages (2,9); b)economical costs (2); c) 

presence of abnormal harmonics (6) and d) complexity of the circuitry.

Harmonic filters connected to the a.c. system have in general 

two functions: l)harmonic minimization and 2) provision of reactive
power.
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Filters may be connected either on the primary or on the 

tertiary winding of the converter transformer but not normally 

on the secondary. The connection may be series or parallel. A 

series filter carries the full current from the source and must be 

throughout insulated .to ground for full voltage. A shunt filter 

i is usually grounded at one end and carries only the tuned harmonic

current and partially some fundamental current. Therefore,shunt 

filters are cheaper than series filters and have the advantage of 

supplying reactive power rather than consuming it as in the case of 

series filters.

Filters in h.v.d.c. are in general of three types :

1) Single tuned filter
p 2) Double tuned filter

3) Highpass damped filter

Tuned filters (high Q) are sharply tuned to one or two of

the lower characteristic frequencies, e.g. the fifth and seventh.

The highpass filters (low Q), if shunt connected, offer a low

impedance over a wide range of frequencies above certain order,
(21e.g. the seventeenth .

In 12-pulse converters, the filtering system may be simplified 

either by using a single filter of the damped type for 2 pairs of 

characteristic harmonics, e.g. the 11-th and the 13-th, or for 

harmonics above a certain order which usually is the 12-th. The 

quality factor, Q, for the first case ranges between 20 to 50 while 
the second case has a much lower Q(2 to 4)(^>40,52)^
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On the d.c.-side, the basic filtering principle is similar
( ' 1 4 ')to that of the a.c.-side . But component ratings are considerably 

different since the harmonic current is largely reduced by the d.c. 

smoothing reactor and the capacitor bank usually has to fully 

withstand the d.c-side voltage.

Increased pulse number or filtering are costly methods of 

harmonic minimization and are used to minimize only characteristic 
harmonics.

Several methods of harmonic injection are presented in the 

literature to minimize harmonics. These methods can be broadly 

classified into three groups:

1) a.c.-side harmonic injection

2) d.c.-side harmonic injection

3) control injection

1.3.1 a.c.-side harmonic injection

On the a.c.-side, a method of magnetic flux compensation 

is proposed by Sasaki^^. A current transformer is used to detect 

the harmonic components from the non-linear load and these are fed 

through a pulse amplifier into the tertiary winding of a transformer 

in such a way as to cause cancellation of the harmonic currents. 

Practicability and cost seem to be the strongest objection to this 

method. The system involves the amplifier output coupling to the
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tertiary winding of the converter transformer to prevent the fundamental 

current from damaging the amplifier and a rather critical transformer 

connection becomes necessary. For harmonics of lower orders, very 

high power amplifiers become necessary with a consequent increase 

in costs. A positive point of this scheme is its ability to 

minimize uncharacteristic harmonics such as the third and ninth.
r 17iAnother harmonic injection method is proposed by Bird 

and later developed by Ametani^^. The method is based on the use 

of the triplen harmonics from an external source which are added to 

the line current rectangular blocks of current . The main advantage 

of this system over filtering is that the system impedance is not part 

of the injection circuit impedance which can then be independently designed. 

The disadvantages are a) ineffective dissipation of the triplen 

harmonic power; b) difficulties in adjusting the amplitude and 

phase of the injected harmonic to suit each practical operating con­

dition; c) compensates only one harmonic at a time; d) needs 

a triplen harmonic generator with the necessary locking to the a.c.- 

side voltage.

Several papers * * * present different arrangements

of sequentially switched RLC circuits using SCR's to generate pu ses 

of current to compenate the reactive and distortive components of the 

converter current. Therefore, the reactive power becomes controllable and 

t he selected harmonics, minimized. An optimal equipment design can 
reduce the harmonic level while compensating reactive power(24,25). 

Mechanical switching of a capacitor bank may introduce transients 

owing to the inaccurate timing of the contact closure.
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1.3.2 d.c.-side harmonic injection

On the d.c.-side, the d.c. voltage ripple can be used as
fl9')a source of harmonics to be injected back into d.c.-sidev .

The principle is based on the same phase relationship that each

d.c. pole has with respect to the common mode d.c. ripple voltage.

The period of this frequency is 1/3T, i.e. a triplen frequency voltage.

Therefore, the transformer must be star-connected on the rectifier

side and must have either a delta primary or tertiary winding. The

primary winding of a single-phase transformer is connected to the

common mode d.c. ripple voltage. This transformer provides the

commutating voltage for a fullwave rectifier connected to the secondary

winding (called "feedback converter") whose output is connected

in series with the d.c. output.. The result is that the original

6-pulse converter configuration has been converted into a 12-pulse

converter system seen from the a.c./d.c. harmonic point of view.

This arrangement seems to be efficient with respect to harmonic

reduction point of view but the high ratings of this additional h.v.

equipment makes such arrangement very costly.
F221Mahmoud et alL J use a re-injection of the d.c. voltage 

ripple to modify the current waveforms through the d.c.-side trans­

former winding by adjusting the injection magnitude and frequency.

This method seems suitable for 3rd harmonic suppression.

The difficulties related to the implementation of the 

harmonic minimization methods so far presented in the literature are:

a) high costs;

b) purpose designed h.v. equipment;
c) major modifications in h.v. equipment.
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1.3.3 Control injection

Ferreira^ suggests a d.c.-side harmonic minimization 

controller to be used in conjunction with microcomputers. To 

obtain the control voltage frequency spectrum, a Discrete Fourier 

Transform (DFT) is suggested from which an auxiliary signal could 

be selected. Ferreira’s suggestion is based on open-loop tests 

using a signal generator as source of the auxiliary signal whose 

adjustment of frequency, amplitude and phase depends on the influence 

upon a) the control voltage or b) the d.c.-side harmonics.

1.4 Objectives of this Thesis

1) Generalization of a computer program to obtain 6- 

and 12-pulse converter describing functions;

2) Analytical studies of uncharacteristic harmonics related 

to control voltage modulation;

3) Development and implementation of a new harmonic 

minimization method based on control voltage modulation.

1.5 Organization of the chapters

A general literature review about converter stability and



harmonic minimization is presented in Chapter 1.

A computer program to obtain 6- and 12-pulse converter 

describing functions is described in Chapter 2. Comparison between 

6- and 12-pulse converter describing functions are presented for the 

most relevant cases. Transformer saturation effects are also taken 

into consideration and numerous examples showing the differences 

between describing function with and without transformer saturation 

are presented.

In Chapter 3, the derivation of approximate relationships 

between modelling signal and uncharacteristic harmonics, is made.

An approximate proportionality between small amplitude of those two 

quantities is established by using sinusoidal modulating signals 
imposed on the control voltage.

The circuitry to inject modulating signals into the control 

voltage of the IC-h.v.d.c. simulator is fully described in Chapter 

4 with several examples of application. In Chapter 5, a harmonic 

minimization method based on control voltage modulation is described. 

Furthermore, practical and theoretical tests are shown to confirm the 

predictions established in Chapter 3.

A summary of the relevant conclusions of each chapter is 

presented in Chapter 6 with a list of the original contributions 

contained in this thesis and suggestions for further development in

the field.
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CHAPTER 2

CONTROL VOLTAGE MODULATION AND CONVERTER STABILITY

2.1 Introduction

A number of different quantities may be controlled in h.v.d.c. 

converters. In practice, the direct current and the extinction angle 

are most frequently the parameters under control.

Usually, h.v.d.c. transmission systems operate with constant 

current (CC) control in the rectifier side and constant extinction angle 

(CEA) in the inverter side. Such control functions are performed through 

the firing control system and involve :

1) measurement of the controlled quantity

2) comparison with a reference value

3) processing of the error

4) modification of the ignition angle to reduce the error.

Appropriate error processing and modification of the ignition

angle play a key role in the stability of converters under closed-loop 

control.

Operation under constant current control can be detrimental with 

respect to abnormal harmonic generation mainly because the d.c. current 

ripple is fed back into the controller. Such ripple although filtered, 

may be sufficient to cause firing angle irregularity and precipitate 

harmonic magnification.
In reference (1), the describing function technique (d.f.) is 

proposed to determine the conditions of occurrence of harmonic instability
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for 6-pulse converters. The d.f.. is evaluated by a computer program 

based on a steady-state non-linear model of the converter valid for large 

perturbations. In the program, the control voltage is modulated by a 

signal of a selected frequency and the component of same frequency present 

in the direct current is calculated. The complex ratio between the two 

quantities yields the describing function.

This chapter deals with converter stability under control 

voltage modulation. Basically, the d.f. studies for a 6-pulse converter 

presented in reference (1), are extended to cover 12-pulse converters and 

transformer saturation. However, as an introduction to the d.f. method, a 

brief revision of firing systems used in h.v.d.c. converters is first 

presented. In Chapter 3, an approximate expression of the d.f. as well 

as some approximate theoretical expressions of the uncharacteristic harmonics 

caused by control voltage modulation are described.

2.2 Firing system

The firing system provides the pulses necessary to initiate con­

duction of the valves so that the chosen quantity is regulated, e.g. d.c. 

current. Firing systems vary widely but can be classified into two 

general categories

1) Individual phase control (i.p.c.)

2) Equally spaced firing pulses using a voltage controlled 

oscillator (v.c.o.)
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2.2.1 Individual phase control

In this firing system, the zero crossing points of the com­

mutating voltages are determined and a delay, a, is added in order to 

determine the firing pulse instants.

The instant at which the valve starts conducting in such systems, 

depends critically on the a.c. network voltages. Disturbances in the 

firing angle or in the d.c. current produce a.c. current variations which 

through the a.c. system impedance result in voltage distortions at the 

converter busbar. These distortions, in turn, affect the firing pulses.

In general, instability occurs at frequencies which are multiples of 

the a.c. system fundamental frequency, resulting in a stationary 

distortion of the voltage waveforms. This type of firing system suffers 

from marked disadvantage mainly when the a.c. system short-circuit ratio, 

SCR (as defined in Appendix A), is low and for this reason is not used in 

recent h.v.d.c. systems.

2.2.2 Equally Spaced Firing Pulses

This system is based on a voltage controlled oscillator (v.c.o.) 

’which produces equally spaced :firing pulses, irrespective of imbalances and 

distortions on the a.c. supply voltage. In steady-state, the pulses are 

accurately spaced by 60° and each pulse occurs within a range defined 

between a . and a . Therefore, the frequency of the firing pulses 

in steady-state must be an exact multiple of the a.c. supply.

Since, for h.v.d.c. the individual phase control has been 

abandoned, only v.c.o. based systems are considered in the next sections.



16

2.3 Types of control systems

2.3.1 Pulse Frequency Control (PFC)

In principle a voltage controlled oscillator converts an input 

d.c. voltage into a train of pulses whose frequency is proportional to 

the input. A change in the phase of the firing pulses causes however a 

change on the d.c. current a fact which is used to control this current.

A change in phase can be achieved by changing transiently the frequency 

of the oscillator and making it return to the steady-state value after the 

desired d.c. current level has been achieved. This is known as Pulse 

Frequency Control and it is represented in Fig. 2.1.

In analogue controllers the sawtooth generator represented in 

figure 2.1(a) is an integrator while in microcomputer based controller 

the sawtooth generator is a counter. Whenever the control voltage,

V , equals the ramp voltage from the sawtooth generator a pulse is 

produced at the output of a monostable. The monostable output shifts 

the firing ring counts and at the same time resets the sawtooth gen­

erator voltage to zero.

A step change in the control voltage, V , (Figs 2.1(b) and (c))

will result in a continuous frequency change of the firing pulses
[63and cumulatively increasing phase angle . The interfiring period 

is proportional to the control voltage :

V
m C

where K is the slope of the ramp voltage from the sawtooth generator.
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(a)

Fig. 2.1 - PULSE FREQUENCY CONTROL (PFC)

(a) Functional Block Diagram
(b) Comparator Inputs
(c) Firing Pulse Instants
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As long as the control voltage remains at a steady level, 

equidistant firing pulses are generated. A step increase or decrease,
AV^, on the control voltage, will produce a corresponding change, KAV^, 

in the interfiring period and the firing pulse phase will change linearly 

with time. After "n" firing pulses since the beginning of the step change, 

the total firing pulse phase is :

Aa = n KAV n c

An integral relationship, therefore, exists between firing pulse 

phase and control voltage. Synchronization of the firing pulses with the 

a.c. system can be implemented through a measurement of d.c. current, firing 

angle or extinction angle, depending on the chosen converter control mode.

2.3.2 Pulse Phase Control fP.P.C.)

In this type of control the firing pulse train phase rather than 

its frequency is modified and the firing angle is proportional to the 

control voltage.

One way of achieving this phase change is by controlling the 

voltage level at the beginning and the end of the ramp voltage, V , as 

in Fig. 2.2. Here, the ramp voltage of the sawtooth generator is not 

reset to zero but to V In analogue controllers, V  ̂is stored as a

a capacitor charge immediately after each firing pulse.

As V is a constant, any increase in V by a small amount,

AVc, will produce an identical increase in V . As a consequence,
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(a)

I
w„t

Fig. 2.2 - PULSE PHASE CONTROL (PPC)

(a) Functional Block Diagram
(b) Comparator Inputs
(c) Firing Pulse Instants

<0* 
N
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the frequency of the firing pulse train remains unchanged although its 

phase is varied by an angle Aa so that

Aa = KAV .c

The PPC system possesses the following advantages over the 

PFC system :

a) The proportional characteristic results in a larger 

stability margin;

b) Operation with constant firing angle is implemented simply 

by setting a constant control voltage;

c) The converter gain, ^d/V^, can be made independent of 

the converter control angle, a , by introducing an "inverse cosine" 

current between the "error processing unit" and the firing control system.

2.4 h.v.d.c. system stability

Stability in h.v.d.c. systems is conditioned by the presence of 

several closed-loop control systems. Abnormal harmonics accompanied 

by firing-pulse imbalance, have been reported in several cases (New Zealand, 

Cross-Channel) sometimes causing excessive interference which has necessitated 

adding expensive special filters. Such instabilities give rise to abnormal 

harmonic, currents which are injected into the a.c. network resulting in 

unacceptable voltage distortion levels.

There are two possible instability modes:

oscillations synchronized with the a.c. system (harmonic 

instability);

oscillations unsynchronized with the a.c. system
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Linearized discrete models of converters have been developed
[7]which enable the prediction of the onset of instability . The main 

limitation of such modes is that they are incapable of

a) predicting limit cycles synchronized with the a.c. 

system voltage;

b) taking into account a.c. system imperfections and firing 

angle irregulatities.

Stability studies of h.v.d.c. converters are important for two 

main reasons:

1) It is vital to understand the mechanism of the occurrence 

of limit cycle oscillations (sustained oscillations) established under 

circumstances such as :

a) resonances in a.c. and/or d.c. system;

b) imhalance/distortion in a.c. voltage;

c) unbalanced .transformer reactances;

d) transformer saturation;

e) firing angle irregularities.

2) It is required to design robust controllers which minimize 

uncharacteristic harmonic generation.

Phenomena present in non-linear systems such as limit cycle and 

sub-harmonic oscillations, can be studied through the describing function 

technique (also known as "Method of Harmonic Balance"). This technique 

is especially useful because :

a) it is simple and reliable;

b) it is a natural extension of frequency response methods 

used in linear stability analysis.



2.5 Systems with non-linear feedback and the describing function

In general, systems with non-linear feedback can be represented 

by a lumped linear element and a lumped non-linear element. The linear 

element is represented by its transfer function, G(s), while the non-linear 

element is given by its describing function, N.

The d.f. is defined as the ratio of the input-signal frequency 

component of the output of a non-linear system to the amplitude of the input 

signal. If the input to a non-linear element is a sinusoidal signal 

of "fundamental” frequency, the d.f. method assumes that the output is a 

periodic signal of the same fundamental frequency. The analysis below, 

therefore, assumes that only the amplitude of the "fundamental" harmonic 

is non-negligible and that any other harmonic and d.c. component are suf­

ficiently small or sufficiently attenuated by the low-pass characteristic 

of the linear element that may be neglected.

Fig. 2.3 is the block diagram of a typical non-linear system 

represented by its linear and non.-linear elements. The input to the 

non-linear element is given by :

x(a)t) = X sin wt.

The steady-state output y can be given by the series :

OO
y(a)t) = I Y, sin (kwt + 0J . 

k=l K k

As a consequence, if the input and the output of the non-linear 

element are represented by phasors, the d.f. will be, by definition, 

given by the complex ratio between output and input signals :
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Y (X,03) j0 fX,o))
N(X,co) = — -----  e -1 . (2.1)

X

Eqn 2.1 is a function of the amplitude and the frequency of 

the input signal. Therefore, the non-linear element is considered to 

have variable gain and pulses which are functions of the amplitude and 

frequency of the input signal.

The conditions for the existence of a limit cycle are defined 

by the solution, (Xq ,Wq), of the identity :

G O )  = -------- . (2.2)
N(X,u>)

Nichols diagrams and gain-phase plots are the most widely used 

techniques for stability analysis when using d.f.'s. As shown in 

Fig. 2.4, a possible solution of eqn 2.2 is provided by the intersection 

between the two loci G(jw) and -l/N(X,w). The solution of eqn 2.2 

gives information about magnitude, X^, and frequency, Wq , of the sustained 

oscillation.

The limit cycle itself can be classified as stable or unstable 

according to the nature of the perturbations around the point (Xq ,Wq). 

Stability of a limit cycle oscillation can be established from the 

Nyquist or Nichols diagram as follows . A positive direction is 

taken to be. the one in which the linear locus, G(jaj), is pointing towards 

increasing frequency while the non-linear locus, - 1/N, is pointing 

towards increasing amplitude. ‘ For the gain-phase plot, a stable limit 

cycle occurs when the - 1/N locus appears to an observer stationed on 

the linear locus and facing its positive direction, to cross from left to 

right in its positive direction. If a polar plot is used instead, the
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R(wt)

■ H g )— ►

Linear
element

G (jw )'
x(w t)

Non-Linear 
el e ment

N (x ,w)
Y(wt)

Fig. 2.3 - SYSTEM WITH A NON-LINEAR FEEDBACK

a) Polar plot (NYQUIST) b) G a in -phase  plot (NICHOLS)

Fig. 2.4 - CONDITIONS FOR EXISTENCE OF A LIMIT CYCLE
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non-linear locus should cross the linear locus from right to left in 

the direction of increasing amplitude, as illustrated in Fig. 2.4.

2.6 Theoretical and Experimental d^f^ for 6-pulse converters

Fig. 2.5 shows the block diagram of a h.v.d.c. system operating 

under constant current control, the linear and non-linear elements being 

separated by a hatched line. The blocks represented inside the hatched 

line can be lumped into a single non-linear element which includes the 

converter a.c. system, d.c. system and valve firing system. The d.f. 

for this lumped non - linear element is defined by :

where:

Vmk
(2.3)

I „ : d.c. harmonic of order k.dk

V ^ : modulating signal (input signal) of frequency kCJ0

To evaluate the d.f., the steady-state control voltage, V , is 

modulated by an input signal., V^, expressed by :

v . = V sinfkant + 0) mk m 0 (2.4)

Excited by V ^ the d.c.-side current will contain a term which 

can be defined as :

i = I sin(ka) t + 0„ )dk dk v 0 <*k' (2.5)
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ELEMENT |6)

Fig. 2.5 - h.v.d.c. AS A NON-LINEAR FEEDBACK SYSTEM
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Either amplitude or phase of V can. be used as the control 

parameter to obtain the d.f. at a given frequency. Letting 0 vary 

from 0° to 360°, a closed curve must result. Several theoretical and 

experimental loci of d.f.’s using the definition above are presented in 

reference In this reference, the theoretical d.f.'s were obtained

through a computer program capable of analysing the mechanism of harmonic 

generation by 6-pulse converters in the presence of imperfections in the a.c. 

voltage, converter transformer and firing system. The flowchart of such 

computer program is presented in Fig. 2.6. The program performs a 

detailed steady-state calculation of a complete h.v.d.c. link, yielding 

all the a.c.- and d.c.-side harmonic voltages and currents up to the 30th 

order.

The experimental d.f’s were obtained through a digital transfer 

function analyser. The built-in function generator provides the 

modulating signal and a built-in correlator with a frequency range 

identical to the function generator, performs the measurement of the 

relevant d.c. side harmonic current. All tests were performed under 

open-loop current control.

The experimental determination of the d.f. obtained in 

reference^ showed fair agreement with the theoretical results predicted 

by the computer program in nearly all cases examined. Difficulties in 

establishing the exact input data to the computer program to match the 

test conditions explain the discrepancies. A typical comparison between 

practical and theoretical results is depicted in Fig. 2.7 which was taken 

from reference Fig. 2.7(a) shows a d.f. obtained from the computer

program and from practical tests on the IC-h.v.d.c. simulator under similar 

conditions. In Fig. 2.7(b) the gain-phase plot predicts a theoretical 

50Hz limit cycle oscillation for a gain 23.2. Under similar conditions,
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Pig. 2.6 - FLOWCHART TO DERIVE D.F.'s FOR 6-PULSE OPERATION
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f = 50  Hz 

Ct° = 15.2  

A a  = 14.6

" U n b a l a n c e d  t r a n s f o r m e r  r e a c t a n c e s "  
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Fig. 2.7(a) DESCRIBING FUNCTION .’COMPARISON BETWEEN THEORETICAL 
AND TEST RESULTS
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on the h.y.d.c. simulator the oscillation occurred for a gain 20.0.

2. 7 Describing functions for 12-pulse converter

Twelve pulse operation is achieved from two bridge converters 

connected to the a.c. supply through a star-star and a star-delta trans­

former. The 30° phase shift introduced cancels some d.c. voltage and 

some a.c. current harmonics compared to 6-pulse operation.

To analyse harmonics and derive describing functions for 12-puls 

operation, the 6-pulse program presented in Figure 2.6 can be used with 

certain modifications.

Three basic modifications of the 6-pulse models are necessary to 

simulate 12-pulse operation, namely : doubling of firing pulses, 

determination of total d.c. voltage and determination' of total a.c. 

current.

The number of pulses from a v.c.o. based valve firing circuit 

can be easily doubled by reducing by half the d.c. level bias which 

in conjunction with a sawtooth waveform, generates the pulsing instants.

The total d.c. voltage in a 12-pulse system can be determined 

through the addition of the individual contributions of each bridge.

This includes both, the constant term and each harmonic present.

The total a.c. current in a 12-pulse system can be similarly 

determined through the separate phasorial addition of the fundamental 

and of each harmonic contribution from the two 6-pulse bridges.

The overall iterative simulation program for either 6- or 12- 

pulse operation is shown in Figure 2.8 .
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Fig. 2.8 - FLOWCHART TO DERIVE D.F.’s FOR 12-PULSE OPERATION
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2.8 Comparison between 6- and 12-pulse d.f.'s

It is shown in reference ^  that the d.f.’s are not equally 

sensitive to all types of possible distortion on the a.c. system.

Table 2.1 indicates the cases for which this sensitivity is most 

pronounced

TABLE 2.1

MOST SENSITIVE DESCRIBING FUNCTIONS

M.S. FREQ. PRIMARY DISTORTION
FREQ. SEQUENCE

50Hz 100Hz +

100Hz 50Hz

150Hz 100Hz -

To identify any differences between 6- and 12-pulses d.f.'s, 

similar studies were carried out using 6- and 12-pulse converters under 

identical per unit conditions. The data used in the calculations for 

12-pulse d.f.'s are :
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Converter rated output

d.c.. voltage per bridge 250kV

d.c. current 2kA

Converter transformer

rating 2x295.5 MVA

copper loss 2500kW

voltage ratio 400±15%/209kV

Control setting

nominal firing angle 15°

nominal extinction angle 18°

Smoothing inductor (per station)

resistance 0.325ft

inductance 0.5 H

D.C. transmission line 

length 

resistance 

inductance

capacitance

800km 

10ft 
0.48H 

up to 40 yF

Typical case of the most sensitive d.f.'s are presented in Figs.

2.9 to 2.11.

Figure 2.9 shows the case of a 100Hz harmonic of positive 

sequence having an amplitude of 1% of the fundamental impressed on the 

primary of the converter transformer. The total effect on the 50Hz d.f.
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is a slight shift of the 12-pulse with respect to the 6- pulse d.f, .

This happens probably due to variations in the commutation angles which 

cause differences in the effective a.c. impedance seen by the converter 

when changing from 6- to 12- pulse operation. The same applies to tne 

150Hz d.f. shown in figure 2,11 where, 2nd harmonic distortion of negative 

sequence is imposed on the converter busbar.

Figure 2.10 shows the 100Hz d.f. for a 1 % distorted fundamental. 

This indicates that the elimination of some harmonics with 12-pulse 

operation results in a circular d.f. .

Extensive studies with 12-pulse converters brought out several 

interesting aspects on to d.f. loci that were not apparent in the 6-pulse 

converter studies presented in reference These aspects are being

discussed in the following sections.

2.9 Analysis of resonance and antiresonance effects

With a finite a.c. source impedance, the converter busbar voltage 

is a function of the current through the converters. A conventional model 

of the equivalent impedance of the a.c. system and filters - s shown in 

figure 2.12.

The busbar harmonic voltage of order "n" is obtained in 

Appendix A as

Vn Zn Zl sn

zn
z zsn
Z +Zsn

fn
fn

( 2 . 6 )

where
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oo

Fig. 2.9 - DF's FOR 6- AND 12-PULSE OPERATION
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o□

Fig. 2.10 - DF’s FOR 6- AND 12-PULSE OPERATION
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Fig. 2.11 - DF's FOR 6- AND 12-PULSE OPERATION
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Norton’s equivalent of the circuit shown in Fig. 2,12, is 

shown in Fig. 2.13.

The resonant frequency of the equivalent impedance gives:

Z = 0 . n

In such a case, the n-th harmonic from the a.c. system can neither 

affect nor be affected by the converter. This is an ideal case never 

met in practice,

The antiresonant frequency gives

Zfn Zsn

where Z can be defined in terms of the a.c, parameters by:

Zsn
V

PxSCR

where : V

P

SCR

is the nominal a.c. line voltage 

is the active a.c. power 

is defined in Appendix A .

Figure 2.13 can be simplified to an ideal current source if the 

source impedance is at its anti-resonant value (Z^ °°). Voltage is

then determined by an impedance which is a function of the converter operating 

point. Under this condition a steady-state solution might be difficult.

In practice, the ̂ impedance source is not infinite and may be 

obtained by equation 2.6. Table 2.2 presents two examples of non convergence 

when SCR = 3 and 12 for 12-pulse operation.



TABLE 2.2

CASES OF NON CONVERGENCE

SOURCE IMPEDANCE CP) MOD SIGNAL P
SCR

50Hz 100Hz 150Hz /—
\

>V__
J

>e F (H z) M W

321. 123. 70. 0.5 100. 500. 2

2000 150. 76. 0.5 50. 500. 12

A simplified model of the d.c. line is shown in figure 2.14.

If the inverter is considered as a short-circuit for all harmonics 

and if R is negligible (Appendix A), the impedance seen by the rectifier 

is :

2 - u)2LC
=  ̂ . (2.7)

^ 1 - 03 LC

The resonant frequency of the line at which = 0 is

£o ■
T</ (2Lr + Lpc

and the antiresonant frequency at which -► 00 is

f =
7 T

As it is demonstrated in Sections 3.9 - 3.11 of Chapter 3, the 

m.s. of a given frequency usually gives rise to harmonic current of the 

same frequency in the d.c. circuit. The closer that frequency is to the d.c.



Fig. 2.12 - EQUIVALENT a.c. SYSTEM IMPEDANCE AND FILTERS
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Fig. 2.14 - T-EQUIVALENT OF THE d.c. LINE
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line resonant frequency, the larger the corresponding d.c. side harmonic 

current. Such a current is only limited by the transformer reactance and 

line reactance and causes enlargement of the d.f. locus. The lower the 

d.c. line impedance at resonance, the more difficult it is to arrive at a 

convergent solution. Conversely, the d.c. line antiresonant impedance 

causes the reverse effect, i.e. zero d.c. line harmonic current and a 

reduction in the amplitude of the d.f. .

Table 2,3 illustrates the profound effect that line impedance 

variations has on the value of the d.f. . In this table, the line 

capacitance, was changed from O.yF to 40.yF.

TABLE 2.3

D.F. FOR DC-LINE RESONANCE AND ANTIRESONANCE 
(SCR=3; M.S.:FREQ=150Kz;AMPL.=0.25V)

p 7
0LINE

NUMBER
LINE LINE DESCRIBING FUNCTION OF

OBSITER.
QiF) (fi) (DEG.)
0.0000 2790. 90. .0376 + j.0084 5

1.5213 -K» - .0000 + j.0000 4 ANTI
RESONANCE

2.0000 539. -90. -.034$ - j.0056 4

3.0427 .01 90. NON CONVERGENCE - RESONANCE

5.0000 1145. 90. .1344 + j.0338 5

10.0000 1280. 90. .0921 + j .0217 4

15.0000 1320. 90. .0851 + j.0199 5

>30 1358. 90. .0786 + j .0182 5

Using the data given in Section 2.7 and line impedance from eqn 2.7, 

the capacitances which give the resonant and antiresonant impedances are, 

respectively :
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CQ = 3.-0427UF 

Cto = 1.5213yF .

As C was increased, the impedance given by eq. 2.7 tended 

to a limit value given by

Ll
= jo)L = ja ) (L r  + y - ) .

For large values of capacitances > 30yF) the line impedance

tends to 1358f2.

Table 2.3 suggests that the d.c.-line harmonic current is 

largest for impedance values closer to the resonant »/alue, e.g. note the d.f. 

amplitude for = 5yF. In Section 3.12 of Chapter 3, the approximate

expression of the d.f. explains the close relation between d.f. and d.c. 

line impedance.

It is very difficult to achieve convergence on a computer program 

for a d.c. line impedance close to resonance and virtually impossible, 

when the d.c. line resonance is associated with an a.c. source antiresonance

*
2.10 Periodicity of the d.f. with balanced a.c. source

In the case of balanced a.c. voltages and a Mp" pulse bridge, 

the effect of phase shifting the m.s. to obtain the d.f. is illustrated 

diagramatically in figure 2.15 for a 100Hz m.s. and p=6. In position 

(2), the m.s. will distort the d.c. voltage in the same way it did in position 

(1), except that now this effect occurs 360/p degrees later. As the m.s. 

has progressed by the same angle, the d.c. voltage distortion will be cyclic.
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The total fundamental cycle (360°) contains k*N subintervals therefore, 

the number of discrete points of the d.f. determined within a 360/p 

interval is :

*

k.xNn = ---
P

( 2 . 8)

where k is the m.s. harmonic order and N is the total number of discrete 

positions within the m.s. cycle.

Furthermore, the loops that the d.f> -curve contains for balanced 

a.c. sources is:

N p n» = —  = rt n k

This conclusion is important with regard to computing time especially 

for p = 12. Only n discrete positions need to be calculated and then 

repeated n^ times.

2.11 Continuity of the d.f.

There is a maximum amplitude of m.s. beyond which the d.f. becomes 

discontinuous. About this limiting value, the firing pulse system provides 

no unique solution. This critical value is a function of the sawtooth 

generator ramp slope, K, as can be seen in Fig. 2.16. The limit is 

determined by the maximum positive tangent to the m.s. . If the m.s. is 

given by eqn 2.4 then:

dvmk
d(wQt)

kV cos (kot, t + 0) m 0



Fig. 2.15 - PERIODICITY OF THE D.F.

Fig. 2.16 - CONTINUITY OF THE D.F.
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*

The maximum positive slope is ;

dv

d(wQt)
'max

Therefore, if :

kV > K m —

the d.f. is expected to be discontinuous. 

Example :

- ramp slope

K =
30°

- modulating signal

(2.9)

f = 15 OH .z

V to be estimated, m

For a continuous d.f. it is necessary that :

V < £  = 1.4324V . m k

Describing function loci derived confirm the presence of dis­

continuity at the limits indicated by eqn 2.7. Furthermore, problems of 

convergence have occurred in the proximity of the limits within a range 

of 10%. Figs 2.17 and 2.18 show a d.f. of a 12-pulse converter with
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(O

Fig. 2.17 - D.F. FOR 100Hz m.s
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lOOH.z m.s. and with amplitude lower and higher than the maximum, res­

pectively.

Table 2.4 gives the m.s. limiting values, for all cases studied 

in this chapter.

TABLE 2.4

M.S. LIMITING VALUES FOR K=9/7rrd/SEC

M.S. FREQ. (Hz) 50 100 150

M.S. MAX. AMPL.(V) 2.86 1.43 0.95

Aa MAX.(DEGREES) 57.2 28.6 19.0

2.12 Some observations on d.f. properties

The d.c.-side harmonic currents are intimately dependent on (a) 

the a.c. voltage waveshape; (b) control voltage disturbances; and (c) 

unbalanced a.c. system impedances When pulse phase control (PPC) is used, 

then the calculation of the interfir: ng period depends normally on the 

I £, the actual d.c. current level, the m.s. and the amplifier gain, K.

The ignition angle, a, will vary with the m.s. and, for small a's and 

large amplitudes of m.s., the variation may be greater than a itself.

To prevent such possibility, a minimum ignition angle, called a  ̂ , Is 

necessary to ensure a certain voltage across the valve before firing it.

However, in a most general case, the a.c.-side harmonics can modify 

the instant of initiation and ending of the overlap angle as well as the

harmonic content along all conduction period. Under these circumstances 

the d.c.-side harmonic currents could be thought of as having two
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approximately independent sources : (a) the a,c, supply waveform and

(b) control voltage disturbances. This is dealt with in Chapter 3.

The following examples of d.f. seem to confirm the above 

deductions. In Fig. 2.19, the 50Hz d.f. of a 12-pulse converter supplied 

from an a.c. source with a phase imbalance, is shown.. It can be seen that 

2% distortion gives twice as much d.f. expansion than 1%. The center of 

the circle C.0.%) remains the same for all loci. Similar observations can be 

made with respect to Fig. 2.20 for a 100Hz d.f. and amplitude imbalance 

of 1% and 2%.

Fig. 2.21 suggests a vector representation for the d.f. based 

on the observations of figures 2.19 and 2.20. Vector n^ determines the 

center of the family of d.f, curves and is approximately constant and 

possibly mostly dependent on the d.c. line impedance and m.s. amplitude. 

Vector n^ rotates p/k times within a fundamental cycle and is possibly 

mostly dependent on the d.c. voltage ripple. Vector n^ rotates at 

the harmonic frequency imposed at the converter busbar and is possibly 

mostly dependent on the harmonic distortion at the converter busbar.

Vectors n^ and n^ could be obtained from the balanced a.c. source case.

This is discussed in more detail in Chapter 3.

2.13 Saturation of the Converter Transformer

A transformer connected to a linear or non-linear load and excited 

by a sinusoidal voltage, absorbs in general symmetrica] excitation current. 

This current contains only odd harmonics provided that the load does not 

absorb a direct component of current. If it does , the magnetic flux 

has no positive-negative symmetry with respect to amplitude and an average



Fig. 2.19 - D.F. FOR 50 Hz M.S.
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Fig. 2.20 - D.F. FOR 100 Hz M.S.
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Fig. 2.21 - VECTOR REPRESENTATION OF THE D.F.
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flux,ti , different from zero exists. This in turn requires the dc
existence of a direct component of excitation current and every harmonic

C3]order should be expected at the converter busbar . Fig. 2.22

shows a simplified representation of the saturated primary current

waveshape in a single phase transformer excited by a pure sinusoidal voltage.

If the postulated infinite busbar supplies only a.c. components 

under steady-state condition, there is no direct component of current through 

the primary winding of the converter transformer. However, if there exists 

a direct current through the secondary winding, it mist be supplied somehow 

by the a.c. source. The problem may be solved by shifting the primary 

current reference as shown in Fig. 2.22(b). The secondary d.c. current 

is referred to the primary in such a way that Ampere’s Law is satisfied:

/Hdt - \ \  - N2Idc
where:

N , : primary and secondary number of turns, respectively

1̂  : reflected primary current

: average secondary current

For analysis purposes, the primary current may be split into two 

components:

a) a current which is a function of the secondary load 

current including the direct component;

b) an excitation current which contains a direct component 

equal and opposite to the direct level of the referred load current.
It is assumed that any harmonic component which may be present 

in the secondary current is transferred to the primary but causes no
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change in the core magnetization. The total core flux at instant "i" 

can then be given by :

where
0 . = 0l ac + 0dc

0 : a.c. magnetic flux
cLC

0, : d.c. magnetic flux, dc

Except in the case of severe resonance, 

cause second order effects on the total core flux 

written as :

the harmonic voltages
L33 , a ,and 0 can beac

0 = 0  sin(wAt + 0)ac m 0
where:

0 : maximum a.c. magnetic fluxm
: fundamental frequency 

0 : phase angle.

The maximum flux, 0^, is related to the maximum phase voltage,

V  by:

V
0 = m

m

Nl “o

The d.c, flux is related to the d.c. current by:

0dc
LI

N
dc

2
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The magnetic flux density at instant "i" may be obtained from

where A is the average cross-sectional area of the transformer core.

The magnetizing force may be obtained from the iron core 

saturation curves, as shown in Fig. 2*23,

The BH curve shown in Fig. 2.23 may be approximated by some

function :

H.i fCB±3 ( 2 . 10)

In a polynomial representation, eqn 2.10 becomes :

H.i
n
I

k=0
a gk k i

The current at instant "i" is determined by :

I.i
ti.li

where t  is the average magnetic path.

The current waveshape can be decomposed into its Fourier 

components.
[33It is shown in reference , that there exists an approximate 

linear relationship between lower order harmonics and the direct current. 

Under constant d.c. level, these harmonics do not disappear even if the 

transformer is underloaded..

The harmonic distortion may be defined as C23
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Fig. 2.22 - SATURATED CURRENT

(a] Saturated excitation current
(b) Effects of d.c. Flux Offset on the saturated excitation current

Fig. 2.23 - SATURATION CURVE (BxH)
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where I is the harmonic current of order "n”. n

2.14 Effects on YY and YA transformers

The secondary d.c. current cannot be directly referred to the 

primary in terms of line-to-line values as for a.c. currents. The 

direct current must be related to the flux offset in phase-to-phase 

terms. Figs 2.24(a) and (b) show star-star and star-delta trans­

former connections, respectively with the associated current relation­

ships .

Examples for YA transformer

a) I’R ■ - *Y

XB = 0

ZR = z, = ZB = R

Then:

b)

:R 5T

T 11 R
l Y ~ + 3T

XB “ 0

rY ■ JB xk
21Y '
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Iy

i -is.R T

1 :

XY " T 
V

T = 1 N1
N„ I2 2 ‘ 1 

Fig. 2.24 - YY-TRANSFORMER CONNECTION

IB T

t i ti
I R . V y ' V b
T

Tt W zc3
it

*Y
II II

I RZR"I BZR
T

T< W zc>
ti 1 1 1

i yzr" i r zy
T

Tt V V zi)
Fig 2.24(b) - YA-TRANSFORMER CONNECTION
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Then; XR =  °

I =Y T

i . 3  .B T

From these examples it is clear that a transformer may be saturated 

or nonsaturated by the presence of d.c. current.

The block diagram of Fig. 2.25 describes the computer subroutine 

developed to include saturation effects in the iterative process used to 

solve the non-linear relationship between 0 ^  and I .

2.15 Saturation and Harmonic Generation

2.L5.1 a.c./d.c. data

In order to study the effect of transformer saturation on the 

d.f., the following data were used:

a) a. c.-side
* Line voltage = lOOkV 

SCR = 12
0 = 87.8 (source impedance angle)

b) Transformer characteristics

The a.c. power was supplied through 3 identical single-phase

transformers connected in YY configuration'.



61

Fig. 2.25 - SUBROUTINE TO DERIVE TRANSFORMER SATURATION EFFECTS



Power (per transformer) 185MVA

Av. core length 2.71m

Av. core section 0.64m^
Transformer ratio 160/58
Primary turns 2154
Core material NUMETAL

Saturation curve given by four polynomial sections 

the coefficients of which are given in Table 2.5.

c) d.c.-side

d.c. transmission line 

reactor

rectifier side : R = 1.6ft; L = 0.3H 

inverter side : R = 1.6ft; L = 0.5H 

line

R = 1. ft ; L = . 2H

I. = 2kA dc
P , = 500MVAdc

d) Control

6-pulses

a = 150°

k = 9/tt Vd/V

V = 0.5V(Aa=10 ?) m
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TABLE 2.5

SATURATION CURVE OF NUMETAL IN TERMS OF A POLYNOMIAL

POLYNOMIAL
COEFFICIENTS

B LIMITS IN TESLA

.0^.001 .001-.2 . 2~. 6 .6~. 74 >.74 .

ao .0 .0 1.5 -61806.2 -76036.0

al .0 22.7 -24.7 366512.2 104174.0

a2 .0 -506.7 288.9 -810392.7 .0

a3 .0 8188.8 -1532.7 790974.5 .0

a4 .0 -95214.6 4315.9 -287071.7 .0

as .0 591183.2 -6200.2 .0 .0

a6 .0 -1921174.5 3628.3 .0 .0

a7 .0 2525638.3 .0 .0 .0

a8 .0 .0 .0 .0 .0

a9 .0 .0 .0 .0 .0

2.15,2 Results

Figs 2,26 - 2.34 show the computer derived plots of the d.f. with 

and without transformer saturation. The following symbolic convention 

was used throughout the figures :
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IH order of the m.s. frequency

HARM1 order of primary imposed harmonic (2% of the

fundamental voltage)

POS.SEQ. : positive sequence of the imposed harmonic

NEG.SEQ.: negative sequence of the imposed harmonic

□ discrete point of d.f, when transformer saturation

is not taken into account

0 discrete point of d.f. when transformer saturation

is taken into account

The figures show that d.c. current through the transformer secondary 

distorts the d.f. locus. Furthermore, the d.c. current through each 

transformer phase changes as the m.s. phase varies. Over a complete d.f. 

cycle, the transformer may pass from a heavily saturated to an unsaturated 

state. The a.c. current percentage distortion may reach values of over 

50% (of the primary fundamental current) in some of the cases studied.

The most prominent effect of saturation on the d.f. occurs when 

the m.s. frequency is 50Hz and a 2nd harmonic negative sequence distortion 

is present (Fig. 2.27). Primary a.c. current distortion as high as 50% 

was noticed due to high level of d.c. current caused by control disturb­

ances. Lower distortions on the 50Hz d.f. were observed with positive or 

negative sequence 150Hz distortion imposed on the primary voltage (Figs.

2.28 - 2.29). Unbalances in the fundamental may also cause some alter­

ation on the d.f. as observed in Fig. 2.34 plotted for a 2% fundamental 

distortion. Other combinations between m.s. and primary frequency harmonic 

distortion seem to have little effect on the d.f.
With a 100Hz m.s. the firing angles of the odd numbered valves 

are identically delayed by the same angle as the even ones are identically
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Fig. 2.26
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Fig. 2.27 •
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Fig. 2.28
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Fig. 2.29
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Fig. 2.30
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Fig. 2.31
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Fig. £.32
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advanced. The commutation angles follow a similar pattern of change as 

discussed in Chapter 3. Under these conditions and with balanced 

undistorted source voltages, the net d.c. current level was negligibly 

low. As a consequence, transformer saturation has little effect on the 

100Hz d.f., even under primary distortions (2nd or 3rd harmonic of 

positive or negative sequence) or fundamental imbalances.

In general, transformer saturation tends to enlarge the d.f. 

locus. However, this enlargement is not very pronounced when compared 

to the effect of other imbalances and/or distortion examined previously.

2.16 Conclusion

Describing functions obtained for both 6- and 12- pulse con­

verters under similar operating conditions, exhibit only slight differences. 

The most noticeable difference seems to be the one relating to fundamental 

imbalances on the a.c. source for a 100Hz m.s. . This is possible due to 

the 6th harmonic elimination in 12-pulse operation.

The study of 12-pulse converters resulted in some interesting 

observations on converter d.f's. For example, it was established that the 

d.f. can shift from one quadrant to another through changes in the d.c. line 

impedance. It was also noticed that the d.f. size decreases as the 

m.s. frequency gets closer to the d.c. line antiresonant frequency and 

increases as the m.s. frequency gets closer to the d.c. line resonant 

frequency.

Imposed harmonics at the primary converter busbar of the 

same frequency as the m.s. seem not to affect the d.f. . This is especially 

true for the 3rd harmonic when the phase voltage difference is zero.



It was demonstrated that the maximum m.s. amplitude to preserve 

continuity of the d.f. locus should not exceed K/k. This is imposed by 

the maximum positive tangent to the m.s. . It was also established that 

in the case of balanced a.c. sources the d.f. is periodic.

The d.f. may be represented by the summation of three 

distinct vectors. This possibility of decomposition was surmised 

from the shapes of the d.f. loci and from the apparent independence of the 

effect on these loci of (a) the harmonics on the a.c. system and (b) the 

m.s. imposed on the control voltage.

When the saturation characteristic of the transformer is 

simulated, the d.c. current through the secondary winding of the trans­

former alters the shape of the locus, particularly when the m.s. is 50Hz. 

These alterations are approximately proportional to the d.c. current.

A 2nd harmonic of negative sequence has the most pronounced effect 

on the 50Hz; d.f. . Third harmonic of positive or negative sequence has 

little effect on the 50H2 d.f. and virtually no effect on d.f.'s of other 

frequencies.

The effect on the d.f. of transformer saturation is negligible 

for m.s. frequencies of order higher than one. Symmetrical transformer 

saturation (zero offset flux) has similarly a negligible effect on the 

d.f. of any frequency.



CHAPTER 3

THEORY OF UNCHARACTERISTIC HARMONIC GENERATION

3.1 Introduction

Studies using d.f. techniques have shown that the m.s. applied 

to the control voltage has a profound effect on the d.c. line uncharacter­

istic harmonic currents. These studies have also shown that presence 

of harmonic distortion in the a.c. busbar voltage causes distortion in 

the d.c. line current ripple and therefore, affects the nature of the 

d.f. . One reason for such distortions is the valve asymmetrical firing 

pattern caused by the closed loop nature of constant current control.

A second reason is that the d.c.-side harmonics are related to those 

on the a.c.-side even if no closed loop current control is used.

If uncharacteristic a.c.-and d.c.-side harmonics are inter­

related through the m.s. then, any a.c.-side harmonic content can be 

modified by acting upon the m.s. . It follows that modification of the 

control voltage could force the converter to generate such uncharacteristic 

harmonics so that the presence of selected undesired harmonics on the a.c.- 

side are minimized.

In Chapter 5, a method of harmonic minimization based on control 

voltage modulation is proposed. The method is based on the approximate 

linearity existing between a.c.-side and the d.c.-side harmonics generated 

either by control voltage modulation or by unbalances in the a.c. system.

The relations underlying the harmonic minimization method, are 

derived in the following sections.

Fig. 3.1 is a "cause and effect" flow chart illustrating the
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interactions amongst parameters in a controlled converter connected in an 

a.c. system of finite source reactance.

The relationships of interest are:

a) firing angle variation, Aa, and amplitude, V , of the m.s.;

b) firing angle variation, Aa, and a.c, busbar harmonic voltage,

V of order k.

c) firing angle variation, Aa, and d.c.— side harmonic current,

I,, of order k. dk
d) a.c.-side harmonic voltage, V and d.c.-side harmonic voltage,

Fig. 3.1 - DIAGRAM OF HARMONIC INTERACTION
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In addition, this chapter deals with the

a) generation of uncharacteristic harmonics due to a.c. source 

unbalances;

b) effect of 6- or 12-pluse operation on characteristic 

harmonics.

3.2 Control Voltage Modulation due to d.c. Current Ripple

The schematic diagram of a constant current control scheme is 

shown in Fig. 3.2. (a). It is based on the measurement of the d.c. - 

line current, 1^, which is transformed into its analogue quantity, I^c, 

and compared to a reference value, I The difference is amplified

and processed in the Error Processing Unit (E.P.U) the output from which 

shifts the train of firing pulses in such a way that the error is reduced.

The d.c. current transducer and the E.P.U. have, both, a low-pass 

characteristic. The d.c. current transducer has a fast time response in 

comparison with the usual time response encountered in h.v.d.c. controllers. 

For example, the time response, T^, of an LEM-type of current monitoring 

sensor is about lys.

In the Imperial College h.v.d.c. converter, a Hall Effect device is 

used for d.c. current measurements. The time constant of this device 

plus output amplifier is about T^ = 0.18ms and the transfer function is 

given by:

H1Cs)
K1
1+sT1

(3.1)
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(a ) Schem atic d iagram  of a constant current control.

d.c-Current 1 ^

(b) Analog circuit to produce the control voltage. 

V' Control voltage.

Zf Filter impedance.

Zs a.c. System  impedance.
ERU' Error processing unit.

Fig. 3.2 - CONSTANT CURRENT CONTROL
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The E.P.U. is basically a low-pass amplifier whose transfer function 

is given by:

h2Cs)
1+sT2

(3.2)

The transfer function of the constant current controller of Fig. 

3.2(b) is therefore: ' .

V*c
K,

1+sT. 1+sT. *dc *ref (3.3)

Equation 3.3 may be simplified if the reference current, I is 

assumed to be a ripple free d.c. level. For frequencies different from 

zero, eqn 3.3. becomes :

V  K1K2c _ ______________
1 dc Cl+sTpCl+sT^

(3.4)

3.3 Linearity between Aa and V

Operation of modern valve firing systems (equally spaced firing 

pulses) is based on a voltage-controlled oscillator (V.C.O.) which, in the 

steady state, operates at p times the a.c. frequency. A firing pulse is 

produced each time the control voltage equals the ramp voltage. The 

angle at which this occurs can be obtained from Fig. 3.3 as :

Kx3 = V - y0 + Vm sin(x0 ♦ x3) (3.5)
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Fig. 3.3 - FIRING ANGLE VARIATION DUE TO A M.S. SUPERIMPOSED ON 
AN IDEALLY FLAT CONTROL VOLTAGE
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where

K - slope of the ramp voltage (V/degrees) 

- interfiring period in degrees.

P

Vq - offset level at the beginning of the ramp voltage with respect 

to the ideally flat control voltage.

- modulating signal amplitude

Xq - phase difference between the instant at which the m.s. goes 

positive and the instant at which the next firing occurs.

In what follows the time reference is always the instant at which 

the last firing pulse occurred, e.g. point Pq in Fig. 3.3. Every

firing pulse defines a new reference for the next firing pulse. The 

offset, Vq , changes at each new reference.

Eqn 3.5 is a transcendental equation and it can be solved by 

numerical methods ^ . In order to establish an approximate linearity 

between Aa and V , an analytical solution is necessary. An approximate 

formula to relate those two quantities is developed below.

* po^xo ,y(P

P1^X1 ,YP

P2̂ 'X2,y2')

P3('X3,y3')

is the instant when the last firing occurred. This is 

the instant taken as the origin of the coordinate system, 

defined by the instant when the ramp voltage would equal 

the ideally flat level of the control voltage, 

obtained by adding to x^, an angle defined by the 

maximum limits within which, the solution of eqn 3.6 

is acceptable.

coordinates of the exact solution of eqn 3.5.
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An approximate solution of eqn 3.5 is the intersection point between

line Pq -P3 and line P1_P2 ‘ Line P^-P2 i-s expressed analytically by:

y - y± = Y2 - yl
x2 - X

(x - x1) (3.6)

where:

X1 =
V - V,

K
(3.7)

Vf, = V sin xn 0 m 0 (3.8)

yl = V - V0 + Vra sin(x0 + xl} (3.9)

V
x2 = sin(x0 ♦ x ) + x (3.10)

y2= V - V0 + Vm Sin(X0 + x25 (3.11)

Eqn 3.6 can be written more explicitly as :

Y ~ yx = K(a-l)(x-x1) (3.12)

where

a = sinlW

sin(xQ+x1)

Furthermore, line Pg - P^ can be expressed by

y = Kx. (3.13)
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The intersection between lines and P^ - P^ is obtained

from the simultaneous solution of eqns 3.12 and 3.13. The solution 

for coordinate "x" is the approximate interfiring period which is given by:

CV-Vn)C2-a) + V sinCxn+xJ
x = x3 = --------------- 2------ ) L - ± -  (3.14)

K(2-a)

Table 3.1 gives a comparison between interfiring periods calculated 

from the solution of eqn 3.5 using the Newton-Raphson method and from 

eqn 3.14. The largest difference between the two solutions does not 

exceed 0.1%.

TABLE 3.1 - INTERFIRING PERIOD CALCULATED BY EQNS 3.5 AND 3.14
(V =0.5 Volts; YA)

VALVE
No. xo NEWTON-RAPHSON EQN 3.14

1 17.99 66.87 66.88
2 84.87 56.32 56.31

3 141.17 51.52 51.53
4 197.48 53.08 53.09

5 245.79 61.12 61.12

6 306.90 71.09 71.09

The variation Aa, due to the m.s. is defined as :

Act = x^ - x^ (3.15)
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Without m.s., = 360/p and x^, in eqn 3.10, becomes approximately

equal to x_ for small values of V /K (say, for V /K < 10°). As a n 2 m ' m
consequence, a = 1. Furthermore, in eqn 3.7, «  V or x^ = V/K.

On these basis, eqn 3.15 can be simplified to become:

Vm VAa = sin(xQ + -) . (3.16)

Eqn 3.16 shows that Aa varies linearly with, Vm for small valuer 

of V /K. Eqns 3,15 and 3.16 are plotted in Fig. 3.4 where only negligible 

error is introduced through the use of the simplified form.

3.4 Effect of the Control Voltage on Characteristic Harmonics

A brief introduction of the basic theory of harmonic analysis
( 2)in converters is necessary as a preamble to the understanding of the 

relationship between Aa and the amplitude of uncharacteristic harmonics.

Assuming: a) supply voltage perfectly sinusoidal; b) infinite

d.c. line reactance; c) equally spaced firing pulses; d) zero comma r 

tating impedance and e) infinite a.c.-side short-circuit ratio, 

converter operation produces only characteristic harmonics, i.e. :

k = np ± 1 for the a.c.-side 

k = np for the d.c.-side

where:

k - is the harmonic order 

p - number of pulses 

n - any integer number.



Fig. 3.4 - COMPARISON BETWEEN THE SOLUTIONS GIVEN BY EQN 3.15 AND EQN 3.16
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In a 6-pulse converter, the a.c. line currents on the valve side 

of the transformer , would consist of a series of equally spaced rectangular 

blocks of current, alternatively positive and negative, as shown in Fig. 

3.5(a). Each pulse has a similar pattern except that, the blocks are 

shifted by multiples of 120°. For this reason, only phase MaM is 

represented in Fig. 3.5(b). Associated to each block of current, there 

is one letter Ca> b or c) and one number (1, 2, 3, 4, 5 or 6). The 

letter indicates the a.c. phase to which the valve is connected and, the 

number indicates the conducting valve.

Fourier analysis may be performed on the current waveforms presented 

in Fig. 3.5(b) where the angle reference is taken at the middle of a 

positive block of phase "a".

The series of positive blocks is an even function which is 

given by:

F+C0) = §( £  + l i sin |2. cos k0) (3.17)

where: "a" is the width of each block, "k" is the harmonic order and

9 = “o'-

The negative series of pulses, F (0), can be obtained from the positive 

series, F (0), if :

a) the sign of F (0) is reversed;

b) the reference is delayed 180° (that is, by replacing 0 by 

0 - 180).

The resulting series of negative blocks is given by :
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(a) Transform er converter line currents-

I

Ii

Fig. 3.5 - LINE CURRENT OF A 6-PULSE CONVERTER UNDER NO OVERLAP ANGLE
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F (.0) = I  [- J  - £  sin |3- cos k0]TT (3.18)
k=l

The total secondary phase current can be derived by adding eqns

3.17 and 3.18. It is convenient to give the phase current as a fraction 

of the d.c. line current and, for the general base case, let:

FC8) = (3.19)

and a = 120

Then, the phase "a" current can be expressed by:

T ,  q ! CQ 1 - oi = --- I , (cos 0 - —  cos 50 + —  cos 70 -TT dcv 5 7

cos 110 + — ■ cos 130 -. . .) . (3.20)

Eqn 3.20 contains only harmonics of order 6n ± 1. These are 

known as the characteristic harmonics. The amplitude of the fundamental 

frequency current is :

2/3I = —  I1 tt dc

and, for any other harmonic current of order k, the amplitude is:

ak k

This harmonic, analysis will be referred to in the following sections

as "base case".
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If the control system does not produce equally spaced firing pulses, 

i.e. either a f  120° or a pulse train occur early or late by some Aa, 

then uncharacteristic harmonic currents are generated even if the other 

assumptions at the beginning of this section are satisfied. Note that 

the same harmonics are only present if some of the assumptions at the 

beginning of this section are relaxed, i.e. finite a.c. system and 

commutating impedances. This case is analysed in the next sections.

3.5 Effect of control voltage modulation on harmonics

As explained in Section 3.2, the control voltage in h.v.d.c. con­

verters with constant current control have always some residual ripple.

As a consequence, the firing pulses are not exactly equidistant and not only 

are the characteristic harmonics slightly changed from their theoretical 

magnitudes and phases but also uncharacteristic harmonics are produced.

In practical non-ideal a.c. systems of low short circuit ratio such un­

characteristic harmonics interact with harmonics originated in the a.c. 

system itself and, from this interaction, a distorted a. c. busbar voltage 

results.

A.c.-side and, d.c.-s.ide harmonics are considered in this chapter. 

It is convenient, under the harmonic analysis point of view, to obtain 

first the a.c.-side harmonic currents and, subsequently the corresponding 

a.c.-side harmonic voltage as explained in Section 2.6 (Chapter 2). Con­

versely, on the d.c.-side it is more convenient to obtain initially the 

harmonic voltage and then, the harmonic current. In this section, a pre- 

liminar general description is given of how the a.c. current and the d.c. 

voltage harmonic analysis is performed.

The harmonics generated by converters can be identified according to
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their origin as follows:

a) characteristic harmonics (base case)
b) harmonics due to non-equidistant firing pulses;

c) harmonics due to the overlap angle

d) harmonics due to distortions, on the a.c. supply;

e) harmonics from the d.c. line;

d) harmonics due to non-linearities, e.g. transformer 

saturation.

Characteristic harmonics were analysed earlier in Section 3.4; 
harmonics due to the overlap argle are only briefly considered later in 

connection with the d.c. voltage; finally the effect of transformer 

saturation was dealt within Section 2.12 (Chapter 2). Harmonics due to 

firing pulse irregularities can be assumed to have their origins in the 

incremental current difference between line currents generated by converter 

operation with (a) equidistant and (b) non-equidistant firing pulses.

This difference can be represented by a train of current pulses as follows.

In a positive series of blocks, the effects of early firing by 

Act is represented by a current pulse of width Act added to the beginning 

of each block of the base case. This incremental current must return 

through another phase. Therefore, a pulse of identical width is sub­

tracted from the end of the block of another phase started 120° earlier. 

Conversely, a later firing by Aot is represented by a pulse of width Act 

substracted from the beginning of each block of the base case and by an 

addition of a pulse Aot to the end of the current block of another phase 

started 120° earlier. This is summarised in Table 3.2.
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TABLE 3.2

INCREMENTAL PHASE CURRENT TO ACCOUNT FOR NOT EQUALLY 
SPACED FIRING PULSES

SERIES OF 
BLO CKS

FIRING
PULSE

POLARITY OF THE PULSE ADDED TO THE BLOCK 
OF PHASE CURRENT

AT THE BEGINNING 
OF THE BLOCK

AT THE END OF THE 
BLOCK

POS. EARLY + -

POS. LATE - +

NEG. EARLY - +

NEG. LATE + -

An example of how the firing pulses may be affected by a 50Hz 

m.s. imposed on the control voltage is given in Fig. 3.6. The negative 

going crossover of that m.s. coincides with the firing pulse to valve 

1. At this particular position, the m.s. causes the phase variation 

of firing pulse to valve 2 to be the negative variation of firing pulse to 

valve 6. Similarly, the phase variation of firing pulse to valve 3 

is the negative variation of firing pulse to valve 5. This can be 

explained by geometrical considerations on Fig. 3.6 , which permit to 

conclude that the portion of the figure limited by the first half cycle 

of the m.s. is the symmetrical negative of the portion limited by the 

second half cycle. This makes the firing pulse variations to be symm­

etrical with respect to firing pulse to valve 4. Similar conclusions 

can be drawn to any 50Hz, 100Hz or 150Hz m.s. which has one of its crossover 

instants coinciding with a firing pulse.
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Fig. 3.7 presents an example of how a firing pulse variation may- 

affect the a.c. side currents of a 6-pulse converter. The incremental 

current differences between the base case and the case in which the firing 

pulses are not equidistant, are separately represented for phasesMaM,

"b" and Mc" in Fig.3.7.

Non-equidistant firing pulses may be obtained by control voltage 

modulation. The uncharacteristic harmonics generated by any converter 

having a modulated control voltage depends on the firing pulse pattern 

caused by the m.s. .

In Chapter 4 (Section 4) it is explained how a specific firing pulse 

pattern can be obtained from injection of a modulating signal (m.s.) onto 

the control voltage. In the following sections, the theoretical harmonics 

caused by sinusoidal m.s. of 50Hz, 100H.2 and 150Hz, are analysed. These 

frequencies are all multiples of the fundamental frequency therefore in 

steady-state, the firing pulse for each valve must be identically affected 

every 360 degrees.

In the incremental a.c.-side harmonic current analysis, the overlap 

angle’ is neglected. Inclusion of the overlap angle would have resulted 

in excessively complex equations. In Chapter 5, test results with finite 

commutating reactance agree well with results obtained using the simplified 

theory in which overlap is neglected. The exclusion of overlap angle is 

therefore justified.

In the case of incremental d.c. line voltages, it is not difficult 

to include approximately the effects of the overlap angle. This is 

shown in sections 3.9, 3.10 and 3.11 where a fixed commutation period is 

assumed. It is also assumed that firing imbalance causes series of 

voltage pulses of two different amplitudes, and which are one overlap 

angle apart from each other. These pulse amplitudes are obtained as a
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function of the base case amplitudes of phase voltage as follows :

E /0 -a E /0 -an . / n m / m (3.21)

where:

(3.22)

E^, E^ are the voltage amplitude of any two phases, n 
and m, respectively,

9^ is the argument of the voltage phases, E^ at the

instant of the last voltage zero crossing.

0 = 6  +240m n
a is the firing angle

\i is the overlap angle.

The incremental analysis of the series of d.c. voltage pulses is 

developed much in the way used to obtain the a.c. - line harmonic currents.

w

3.6 Effect of a 50Hz m.s. on the a.c.-side Harmonic Currents

Fig. 3.6 shows a 50Hz m.s. superimposed on a flat control voltage.

In each cycle of the m.s., three consecutive valves in the firing order

are fired early (say, valves 1, 2 and 3) and the other three remaining valves,

are fired late (4, 5, 6). As a result, the firing pulse distribution becomes

such that, if an even numbered valve in one of the bridge arms (say,

arm "a"), is fired Aa^ degrees early, then another even numbered valve

(say, in the arm "b") will fire late by an approximately equivalent angle
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Aa^, but of opposite sign. The same happens to the corresponding

odd numbered valves of arms Ma" and MbM, except that by a different angle, 

Aa2- In the third arm (arm "c") one valve fires early and the other fires 

late by an approximately equivalent angle Ac^. If the positive going 

crossover of the m.s. coincides with any firing pulse, the even numbered 

valves of arms Mb" and McM experience theoretically the same [Aot | as shown 

in Fig. 3.6. The corresponding odd numbered valves of arms "b" and "cM 

have also equal variation of firing angles in terms of absolute value.

The valves of arm "a" are assumed to fire on time.

Fig. 3.7(a) is based on the case of Fig. 3.6, and shows how valve 

currents are modified with respect to the base case when a 50Hz m.s. is 

superimposed on the control voltage. The letters outside of the current 

blocks indicate the conducting phase while the numbers inside of the current 

blocks indicate the conducting valve. In Fig. 3.7(b), the incremental 

current due to the difference between the base case phase currents and the 

case when a 50Hz m.s. is superimposed on the control voltage, is shown.

From this figure, the following conclusions can be drawn:

a) Phases "a" and MbM are made up of alternate pulses of width 

Aa^ and Ao^;

. b) Phase "cM is leading phase "a" by approximately 120° .

c) Phase "b" is a combination of the currents through phases "a” 

and McM (Fig. 3.7(b)) because :

I) the converter transformer secondary has no neutral return 

II) valve 1 is assumed to fire on time and therefore, it is not 

associated with incremental current pulses

d) From a, b and c above can be concluded that the train of 

pulses, form an approximate balanced 3-phase set of second harmonic currents 

of positive sequence.

e) There is a net d.c. current level through all phases.



Table 3.3 summarises the firing angle variations for a 50Hz m.s. .

TABLE 3.3

FIRING ANGLE VARIATION, Aa, DUE TO 
A 50Hz M.S.

VALVE Aa

1 0

2 - Aa^

3 - Aa2
4 0

5 + Aa2
6 + Aa^

Because the first current pulse through phase "c" coincides with 

the reference, the Fourier analysis of the incremental phase current is 

started by that phase.

3.6.1 Harmonic Analysis of Phase "c"

The series of current pulses through phase "c" can be divided into 

two types :

1) Pulses of width Aa^

2) Pulses of width Aa^.

The same two steps used to obtain eqn 3.18, can be employed in 

the Fourier analysis of the current pulses of Fig. 3.7. These steps are:
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a) sign reversal and b) phase shifting. Sign reversal turns the series 

of negative pulses into a series of positive pulses. Phase shifting 

refers the middle of an incremental block of current, to the main angle 

reference which is fixed at the middle of the positive block of current 

through valve 1 (Fig* 3.5). These two steps of analysis are performed 

on the generic summation term of eqn 3,17 which is given below in terms 

of phase current in connection with eqn 3.19.

2Idc kai , = ---- (sin —  cos k0) (3.23)
ck kir 2

where subscript ncM indicates phase "c" and subscript ”k” indicates harmonic 

order k.

To describe the two trains of negative pulses of phase "c" as 

represented in Fig. 3.7, the variables "a" and "0" in eqn 3.23 are replaced 

by the values given in Table 3.4. The two expressions are then combined 

into a single equation.

m

TABLE 3.4

PHASE Mc" PULSE TRAIN PARAMETERS, (50Hz M.S.)

PULSES OF WIDTH a 0

Aa- Act.
Aa-

9 + '1 1 2

Aa2 Aa2
Aa?

0 - -y=- - 180.
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The harmonic current of order k through phase Mc" is then given by

kAot Aai i kACX2 f Aa? Vsin ----  cosk 0 + 1 + sin — —  cosk 0- — -180
2 2 J 2 2l JJ

....(3.24)
Eqn 3.24 can be simplified through

sinA cosB = ^Csin(A-B) + sin(A+B)]

to become

21dc
ck kir

cosk(9-90)sin k9O-cosk(0 +
Ao^-Ac^

- 90) x

sink
Aa1+Aa2

+ 90

Odd and even harmonics can be considered separately.

a) Odd harmonics (odd k)

Introducing the identities 

cos(A-90) = sinA 

sin(A+90) = cosA 
into eqn 3.25 yields

21dc
ck kir

sinkQ - sink 0 +
Aa^-Aa

cos k
Aa^+Aa2

(3.25)

(3.26)
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b) Even harmonics (even k)

21,dc . ,1 , = - ---- s m  kck
Aa^+Ao^ f Aa1-Aa2 

cos k 0 + ------- (3.27)

Eqns 3.26 and 3.27 can be rewritten as

= *ck Sin kC9 • 0c> Codd k) (3.28)

Ack = Xck C0S k(Q + 0d} (even k) (3.29)

where:

ck
21.„ / 7 2---- /(cos' k0 - cos k0 ) + sin k0,y s d dkTT

(odd k)

(3.30)

21dc
'ck kir

sin k0 (even k) (3.31)

k0 = TAN c
-1

sin k0, cos k0 _____ d_______s_
1 - cosk0, cosk0 ̂ d 5

(5.32)

Act + Aa2
(3.33)

Ac^ - Aa2
(3.34)

It was noticed that, as in characteristic harmonics, the magnitude 

of eqns . 3,28 and 3.29 are related inversely to the harmonic order. In 

h.v.d.c. systems under steady-state operation Aa^ and Aa2 would be very
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small (< 5°). An approximation of eqns 3.30 and 3.31 can then be 

made for low harmonic orders (small k) and small values of Aa^ and 

Ao^ as shown in Appendix B by equations B.8 and B . 10 for odd harmonics 

and equations B.13 and B.14 for even harmonics. Those equations are 
presented below:

a) For odd harmonics :

kIdc 2
ck = l i -  (Aal + Aa2} (3.35)

k0 = 0  c (3.36)

b) For even harmonics :

ck S - - f  ^ a l + A<V (3-37)

k0d = 0. (3.38)

*

For small values of Aa^ and Aa^, the squared term in eqn 3.35 and 

therefore, the magnitudes of odd harmonics are negligible. On the other 

hand, the amplitude of current of low even harmonic orders given by eqn 3.37 

are approximately proportional to the firing angle variation.

3.6.2 Harmonic Analysis of Phase "a"

Values of "a" and "6" to represent the harmonic currents through 

phase "a" according to the generic term of eqn 3.23, are shown in
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Table 3.4. This Table is compiled with values obtained from Fig. 3.7.

TABLE 3.5

PHASE "a" PULSE TRAIN PARAMETERS 

C50H£ M.S.)

—

PULSE OF 
WIDTH a 0

Aa, Act,
Aol

0 + 120 - i :1 1 2

i a 2 Aa2
Aa

0 60 + z
2

The procedure used to obtain the harmonic current follows the 

same lines as in the previous sub-section and is shown in Section B.3 

of Appendix B. The results of this analysis are summarised below:

a) For odd harmonics

'ak = *ak sin k(6 + K  + 12°)
where

2 2 2 2 (cos k0 - cos k0.) + sin k0,s d d

ak0 k0 c

(3.39)

(3.40)

(3.41)
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b) Even harmonics

^ak = *ak C°S k(6 " 0a + 120) C3.42)
where

21
I . ------—  sin k0 (3.43)
aK kn s

0a = 0d . (3.44)

3.6.3 Harmonic Analysis of Phase "b"

As pointed out at the beginning of this section the harmonic current 

through phase MbM is a result of the negative summation of eqns 3.28 

and 3.41 for the odd harmonics and of eqns 3.29 and 3.42 for the even 

harmonics. These summations give respectively :

S k  = ' CIck sin k(9 • 0c3 + 3ak sin kce + 0a + 120)3

for odd k (3.45)

where:

21
Xak I-1"

dc
ck=“r r / ( cos k0s - cos k0d3 + sin k0a

0 = 0 = r  TAN'1a c k
sin k0 _ cos k0 d s
1 - cos k0 . cos k0 d s

and

*bk = - CIck cos k(8 + 0d3 + 3ak cos k(9 ' 0a + 120)3

for even k (3.46)



where

2ldcI = I . = - ---- sin k0
a k  C k  klT S

0, = * A -a d

Eqn 3.45 can be transformed into a sum of sines, i.e

i = - I Csin k(6 - 0 ) + sin k(0 + 0 + 120)] (3.47)
DK CK C C

Through the identity

sin A + sin E = 2 sin ^(a+B)cos %(A-B)

eqn .3.47 can be reduced to

i = - I C2sin k(0 + 60)cos k(0 + 60)]
DK CK  * C

(3.48)

which can be simplified into :

V  = V  sin k(e + 60) (3,49)

where

rbk = -2Ick C0S k(0c + 601 ■ (3.50)

Similarly, eqn 3.46 can be transformed into a sum of cosines,

l.e. :

L, = - I . Ceos k(0 + 0.) + cosk(0 + 120 - 0,)] bk ck d ' d (3.51)
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Through the identity

cos A +• cos B = 2 cos%(A+B)cos15(A-B)

eqn 3.51 can be reduced to :

58 “ I ^  2Ccos k(6 + 60) cos (0^ - 60)] (3,52)

which can be simplified into:.

where
ibk = cos ^(9 + ^  for even ^ (3.53) 

rbk = "2Ick cos(0d " 60)‘ (3.54)

Tables 3.6 and 3.7 summarise the equations for odd and even harmonics,

respectively

3.6.4 Cases of particular interest

Some cases of particular interest for the harmonic minimization

method presented in Chapter 5 are highlighted below

*



TABLE 3.6

A.C. SIDE ODD HARMONIC CURRENTS DUE TO A 50Hz M.S.
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TABLE 3.7

A. C. SIDE EVEN HARMONIC CURRENTS. DUE TO A 50Hz. M.S.

*

a) Second harmonic current (k = 2).

For k = 2, the equations in Table 3.7 becomes

c2 Ia? cos(20 - 20d + 240) (3.55)

(3.56)Ab2 = Xb2 COS C20 + 1205
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S *  = lc2 COSt26 + (3.57)

where:
21

1 o = 1 o a2 c2
dc .—  sin 20

TT

21dc
b2 7T

s m  20s cos(20^ - 120),

If 0^ is negligible, equations 3.55 to 3,57 reduce to

i&2 = I2 cos(20 + 240) (3.58)

i,  ̂ = I0 cos (20 + 120) DZ Z (3.59)

where:
ic2 = X2 COSt29)

= I ~ = I, . = I -2 a2 b2 c2
I
—  s m  20
7T S

(3.60)

Eqns 3.58 to 3,60 can be recognized as a balanced set of 3-phase 

second harmonic currents of positive sequence.

b) Modulating signal phase shifting.

Fig. 3.8 shows the effect of a 50Hz m.s. on the incremental line 

current of a 6-pulse converter. The negative going crossover of this 

m.s. coincides with the firing to valve 2 rather than valve 1 as previously. 

If the angle reference is shifted 60° as in Fig. 3.8, the incremental 

currents in this figure are related to those of Fig, 3.7 as follows :

*
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Fig. 3.8 - NEGATIVE GOING CROSSOVER OF A 50!lz m.s. COINCIDING WITH FIRING 
PULSE TO VALVE 2
(a) Line Currents
(b) Incremental Line Currents

*
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1ak = 1bk

i' = -ibk ck

1ck 1ak

Consequently, if 0 is replaced by 0 - 60, the currents i* , i'
a K  D K

and i' can be expressed in terms of the equations in Tables 3.6 and 3.7.
CK

i' = - I, . cos k0 ak bk

i' = - I cos k(0 + 0, - 60) bk ck d

i ik  = '  r ak cos kC9 -  0d + 60)

For k = 2, these equations can be rewritten as in Table 3.7

ia2 = I2 cos(20 + 180) (3.61)

ib2 = 1 2 cos(20 + 20d + 60) (3.62)

i _ = I0 cos(20 - 20, + 300) c2 z a (3.63)

For negligible 0^, eqns 3,61 to 3.63 form a balanced set of 3- 

phase positive sequence second harmonic currents.

A similar analysis can be pursued for the case in which the 
negative-going crossover of the 50Hz m.s. coincides with the firing to- 

valve 3, From analogy with the previous case, if 0 is replaced by



0. - 120°, the equations of Tables 3.6. and 3.7 can be used again to express the 

incremental currents of Fig. 3.9.

i,r = i ak ck

iM — i bk ak

iM = i ck bk

which lead to:

i'ak = *ck C0S k(S + 0d - 120^

= Xak cos k(S " 0d3

i'ck = rbk cos k(0 ' 60:1 •

If 0^ is negligible and k = 2 in eqn

i a2 = I 2 cos (29  + 120)

i" = I cos 20 b2 2

i'̂ 2 = I2 cos (20 + 240) ,

(3.64)

(3.65)

(3.66)

3.64 to 3.66, results

(3.67)

(3.68)

(3.69)

It is possible to conclude that the phase of the second harmonic 

positive sequence changes according to the m.s. phase shift. That is, 

if the m.s. is shifted by 60° in fundamental terms, the a.c. line second 

harmonic current also shifts by 60° in second harmonic terms. This

effect is further discussed later on in this chapter.
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*

Fig. 3.9 - NEGATIVE GOING CROSSOVER OF A 50Hz m.s. COINCIDING WITH FIRING 
PULSE TO VALVE 3

(a) Line Currents
(b) Incremental Line currents

*
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3.7 Effect of a 100Hz m.s. on the a.c. Line Harmonic Currents

The effect of a 100 Hz m,s, whose positive going crossover 

coincides with the firing pulse to valve 1, is shown in Fig. 3.10.

The firing pulse distribution caused by this m.s. is such that the two 

valves connected to the same phase are both Aa degrees early or later.

The magnitude of Aa depends on the m.s. phase and amplitude, as de- * 

monstrated in Section 3.3. The phase currents are now no longer made up 

of 120° wide blocks but, of alternately shorter or longer blocks. The 

harmonic analysis that follows shows that such blocks of current 

generate triple.n harmonics.

Figs 3.11 shows the incremental variation of valve current with 

respect to the base case when a 100 Hz m.s. is superimposed onto the 

control voltage as in Fig. 3.10. The following observations can now be made.

a) Phase "a" and phase "b" currents consist of alternate negative 

and positive pulse of width Aa spaced by 180°;

b) Phase "c" current leads phase "a" current by approximately 120°;

c) Phase Mb" current is a combination of phase "a" and phase 

"c" currents;

%  d) There is no d.c. current through any of the phases.

Table 3.8 shows the variation in firing angle for the six valves 

with respect to the base case. The incremental current through phase 

"c" is again analysed first.
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Fig. 3.10 - FIRING PULSE VARIATION DUE TO A 100Hz M.S. (6- 
CONVERTER)
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TABLE 3.8

FIRING PULSE VARIATION DUE TO A 100 Hz M.S.

VALVE Aa

1 0

2 Aa

3 - Aa

4 0

5 Aa

6 - Aa

3.7.1 Harmonic Analysis of Phase "c"

The generic summation term given in eqn 3.23 is used to obtain 

a single expression to combine the series of positive and negative 

pulses of current.

Phase changing and sign reversing are used in connection with 

4k eqn 3.23 to obtain Fourier components of the incremental current through

phase "c". This current can be split up into two types of pulse trains:

1) positive pulses

2) negative pulses.
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Table 3,9 shows the values of "a" and M0M to represent the harmonic 

currents through phase "c" according to the generic term of eqn 3.23.

This table is compiled with values obtained from Fig. 3.11.

TABLE 3.9

PHASE "CM PULSE TRAIN PARAMETERS (100Hz M.S.)

TRAIN OF
PULSES a 0

POS. Aa

MEG. Aa 0 -yL - 180

The generic term for the positive and negative pulses is given, 

respectively by

(3.70)

(3.71)

21
‘ck

dc . kAa ,—  s m  —x—  cos k(9

and
TTk

21
1ck

dc . kAa .—  sin —t— cos k(0
irk

Aa* 
2 J

Y- - 180)

A single expression for the harmonic currents through phase McM 

is obtained by adding together eqns 3.70 and 3.71.

21
'ck TTk

dc . kAa r . , Q Aa* .—  s m  —— - Lcos k(0 - — ) - cos k(0 -
L*

Aa - 180)1

(3 .7 2 )

For odd and even k's, eqn 3.72 reduces respectively to

*
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Fig. 3.11 - INCREMENTAL LINE CURRENT CAUSES BY A 100Hz m.s.

(a) Line Currents
(b) Incremental Line currents
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41
'ck TTk

dc . kAa , f q Aa. —  sin ~y ~ cos kC0 - — )

i ck = °-

3.7.2 Harmonic analysis of phase "a"

(3.73)

(3.74)

Table 3.10 gives the values of Ma" and "0M to be used in eqn ' 

3.23 so that the current of phase "aM in Fig. 3.11 is derived.

TABLE 3.10

PHASE "a" PULSE TRAIN PARAMETERS

TRAIN OF 
PULSE a 0

Aa „ Aa+ 0 + y- - 240

- Aa a Aa 0 + ---- 60

As previously, the harmonic current of order k through phase 

"a" can be expressed by

21dc . kAa r . ^ Aal . = ----  s m  Lcos k(9 + ^--- 240)ak 2 2TTk
cos(0 + yt - 60)]

C3.7S)

In order to simplify the analysis, let 9^ = 0 + 120, so that:

21dc . kAar . ic, Aa. 
ak = ^ 1 T Sin — Cc0S k(0l + - } cos k(0 + — • - 18°)]

(3.76)

*
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Eqn 3.7.6 can express odd and even harmonics separately as

follows:

41
ak

dc . kAa . Aa._  sin _  cos kce ♦ - )

for odd k’s (3.77)

i . = 0 for even k'sak (3.78)

3.7.3 Harmonic analysis of phase "bM

In Fig. 3.11, the harmonic currents through phase "b" are the 

negative summation of the harmonic currents through phase "aM (eqn 

3.7.6) and phase Mc" (eqn 3.7.2). No even harmonics are present. The 

odd harmonic currents in phase Mb" are given by:

41
bk TTk

dc . kAar . ra sin —x—Ceos k(0 Aa•) + cos k(0 + Aa
2 120)]

(3.79)

Though the trigonometric identity

A n o A+B A~Bcos A + cos B = 2 cos —j- cos —

eqn 3.79 is simplified to read:

81dc • kAa - . Aa. ra ,n.1.. = - ---- s m  — —- cos k(60 + — ) cos(0 + 60)bk 2 2kir
(odd k 's ) (3 .8 0 )

*
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3.7.4 Cases of particular interest

a) Harmonic currents of the 3rd and 9th order caused by 100Hz m.s 

on the control voltage, are of particular interest because:

i) the fundamental (k = 1) is always present; 

ii) no even harmonics are predicted;

iii) characteristic harmonics (k = 5, 7, 11, 13, etc.) are 

minimized by filters a^d/or 12-pulse operation.

Eqns 3.73, 3.77 and 3.80 for triplen harmonics are reduced to:

41dc . kAa . Acl 
■ ak= — s i n — cos kce + (3.81)

41dc
bk sin kAa cos k0

kTT
(3.82)

41
ck

kTT

dc • kAa , f q Aa.- s m  ~y ~ cos k(0 - — ) (3.83)

For small values of Aa, currents i ^ and i ^  are approximately

in phase and both are in approximate phase opposition with ibk

b) The harmonic amplitude in eqns 3.81 and 3.83 is given by

A = ik sin~ r  • ' (3-84)

Expanding the sine factor through

sin kAa kAa kAa 
3! 2

3 (kAa  ̂5
5! 2 (3.85)

Hence for small values of Aa,

aA ~ ---
=  TT
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It can be concluded that the amplitude of odd harmonics caused 

by a 100Hz m.s. are approximately proportional to Aa. The same con­

clusion may be drawn for eqn - 3.82.
c) Modulating signal phase effects.

Fig 3.12 shows the phase effects of a 100Hz m.s. on the incremen­

tal currents of a 6-pulse converter. The positive going crossover of 

this m.s. coincides with the firing to valve 2 rather than valve 1, as 

in Fig. 3.11. In figure 3.12, if the angle reference is shifted by

60 degrees, the incremental currents i'̂  , i^ and i'̂ ' are related to the 

incremental currents i , i^ and i of Fig 3.11 through the expressions

1ak = _1bk

i = - i bk ck

'ck ak

Phase currents i* i ^  and i'c^ can be expressed by the eqns 

3.73, 3.77 and 3.80 if 9 is replaced by 0 - 60. This gives

81, dc . kAa . r , n Aa. . a
ak = —  Sln T  C05k(6° + 2")C0S k9 (3.86)

41
Xbk

1ck

dc
kTT

41, __d(
kTT

s m kAa
2 eosk(0 - - 60) (3.87)

kAa
2 cosk(9 + + 60) (3.88)

*
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A d

f-*- 1 80°-*-j

h -i2oH
i / c

Fig. 3.12 - POSITIVE GOING CROSSOVER OF A 100Hz m.s. WITH FIRING PULSE 
TO VALVE 2

4
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For triplen harmonics, eqns 3.86 to 3.88 are reduced to 

41
= ------ sin k Aa cos k0 (3.89)

(3.90) 

(3:91)

i \ 41
bk kir

dc . kAa . f f\ Aa. —  sin — ycos k(0 - y )

41
■5 » ck

dc . kAa Aa n
kir 2 v 2

For

approximately

t0

small values of Aa, harmonic currents i* and i!. arebk ck
in phase with each other and in antiphase with respect

Similar remarks can be made for phase shifts of the m.s coin­

ciding with other firing pulses.

3.8 Effect of a 150Hz m.s. on the a.c. line harmonic currents

If a 150Hz m.s. is imposed on the control voltage of a 6-pulse 

converter, the firing pulses to the valves will be alternatively advanced 

and delayed, as shown in Fig. 3.13. The harmonic analysis below assumes 

that the odd-numbered valves are fired Aa degrees early and the even-numbered 

valves are fired on time, as indicated in Table 3.11. The current pulses

corresponding to the difference between the base case and the case in 

which the firing pulse distribution is modified by a 150Hz m.s., are shown 

in Fig. 3.13. It can be observed in the following

a.) Phases MaM , "b" and "cM consist of identical train of pulses 

phase shifted successively by 120°;

*
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Fig. 3.13 - FIRING PULSE VARIATION DUE TO A 150Hz m.s. (6-PULSE CONVERTER)



TABLE 3 .1 .1

FIRING PULSE VARIATION DUE TO A 150H'z M.S.

VALVE Aa

1 Aa

2 0

3 Aa

4 0

5 Aa

6 0

b) There is no d.c. current component

The harmonic analysis is started with phase "b".

3.8.1 Harmonic analysis of phase Mb'T

Table 3.12 gives the values of "a" and M0” that should be intro­

duced in eqn 3.23 to represent the Mb" phase currents in Fig. 3.14.

TABLE 3.12

PHASE "b" PULSE TRAIN PARAMETERS (150Hz M.S.)

SERIES OF PULSES a 0

+ Aa

Aa 0 - 2 4 O + |2̂
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Fig. 3.14 - INCREMENTAL LINE CURRENT CAUSED BY A 150Hz m.s.

*
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The train of positive and negative pulses is given, respectively

by:

21
Lbk "

dc . kAa . ,Q . Aa . _ sin_ c o s  k(0+ ^-) (3.92)

21
bk

dc . kAa , Aa _.n.-—  s m  — tt-cos k(0 + —--- 240)kn 2 2 (3.93)

To combine the trains of positive and negative pulses, eqn 

3.93 is substracted from 3.92.

21dc . kAar , ra Aa. 
Lb k = — sin — Ceos k(9 +

Eqn ,3.94 can be simplified to:

cos k(9 + - 240)3

(3.94)

41
i = - — —  sin ^ sink 120 sin k(0 + ^  -120) 
tk kTT 2 2

(3.95)

Harmonic currents expressed by eqn -,3.95 can be classified into 

three categories:

a) Harmonics of order k = 3q - 1 

Here the following form obtains

2 /y r0 dc . kAa „. , ,n Aa
Lbk = T f  Sln —  Sln k(9 + “  '120) (3.96)

b) Harmonics of order k = 3q + 1 

Here the form is

dc . kAa . , ,n Aai, , = - -----  s m  —x— s m  k(0 + -=-- 120)
bk kTT 2 2

(3 .9 7 )
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c) Harmonics of order k = 3q

i,, = 0.bk

3.8.2 Harmonic analysis of phase "a"

From Fig. 3.14 it is clear that phase current "a" can be obtained 

directly from eqns 3.96 and 3.97 through the substitution 0 0 +  120°

41
'ak kTT

dc . kAa . . . Aa .—  s m  s m  k 120 sin k(0 + — ) (3.98)

as the general form and

2/31dc . kAa . Aa %l. , = ------  s m  — —  sin k(0 + — )
3k kTT 2 2

for k = 3q - 1

2/31
'ak

dc . kAa . . Aa v—  sin — =— s m  k(0 + ■=— )
kTT

for k = 3q + 1

3.8.3 Harmonic analysis of phase Mc"

In this case the substitution 0 0 +  240 gives

(3.99)

(3.100)

2/31dc . kAa . j ,a x Aas m  — s m  k(0 + ^---240)Aa
ck kTT

fo r  k = 3q -  1 (3 .1 0 1 )
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'ck
^y3*dc . kAa . . ,Q Aa nAn\— ——  s m  — s m  k(0 + ---- 240)

for k = 3q + 1 . (3.102)

Clearly harmonics of order k = 3q - 1 are of negative sequence 

and those of order 3q + 1 are of positive sequence. There are no 

zero sequence currents.

3.8.4 General comments

a) Proportiona 1 ity between Aa and a.c. line harmonic currents

The amplitude of the harmonic currents of order k given by 

equations 3.96 through 3.102 is

*k “
2/31dc
kn

kAa sin — (3.103)

Using a truncated Taylor series expressed for the sine factor

results

*

/3AaT _____dc_
TT

It can be concluded that for small Aa the harmonic currents 

caused by a 150Hz m.s. on the control voltage, is proportional to Aa.

b) Harmonics of even order.

For k = 2, eqns 3.96, 3.99 and 3.101 become :

a2 s in (2 0  + Aa ) (3 .1 0 4 )
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i, _ = An sin (29 + Aa - 240) o2 2 (3.105)

ic2 = A2 sin(29 + Aa-120) (3.106)

where is obtained from eqn 3.103.

Eqns 3.104 to 3.106 are recognized as a set of balanced 3-pulse 

second harmonic currents of negative sequence.

The 4th, 8th and 10th harmonic, currents are close to the cut­

off frequency of harmonic filters (turned at 5th, 7th, 11th) and a reduction 

in their magnitude should be expected.

c) Modulating signal phase shift

The incremental phase current in a 6-phase converter whose control

voltage is modulated by a 150Hz m.s., is shown in Fig. 3.15. The m.s.

here is delayed by 60 degrees with respect to the case illustrated in

Fig. 3.14. The incremental harmonic currents i' , i' and i'. areak bk ck
described by eqns 3.96, 3.99 and 3.101 with a negative sign for harmonics 

of order k = 3q - 1 and by eqns . 3.97, 3.100 and 3.102 with a negative 

sign for harmonics of order k = 3q + 1. The angle reference 9 must also 

be replaced by 9-60. The incremental harmonic currents are then given by

a) for k = 3q-l

i^k = -A^ sin k(9 + ^  + 300)

ifek = 3in k<9 + ^  4 18°)

A CL

ick = " \  Sin k (0 + ~  * 6°)

(3.107)

(3.108)

(3.109)

%
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Fig. 3.15 - POSITIVE GOING CROSSOVER OF A 150Hz M.S. COINCIDING WITH 
FIRING PULSE TO VALVE 2

4
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b) for k = 3q + 1

(3.110)

(3.111)

(3.112)

If k = 2, eqns 3.107 and 3.109 become

ia2 = A2 sin(20 + ha + 60) (3.113)

i^2 = A2 sin(29 + Act + 180) (3.114)

i^2 = A2 sin(20 + Act + 300) . (3.115)

Comparing eqns 3.113 to 3.115 with eqns 3.104 to 3.106 it is 

concluded that a second harmonic of negative sequence caused by a 150Hz 

m.s., changes its phase according to the phase of the m.s. . That is,

if the m.s. is shifted by 60 degrees in fundamental terms, the a.c. line 

second harmonic current becomes also shifted 60 degrees but, in second 

harmonic terms. The implications of this are discussed later on in this 

chapter.

3.9 Effect of a 50 Hz. m.s. on the d.c. voltage

A m.s. on the control voltage of a converter causes not only 

harmonic distortion on the a.c. current but also, on the d.c. current 

voltage. The heavy line in Fig. 3.16(a), represents the base case for 

which equally spaced firing pulses and a balanced sinusoidal a.c. supply

i^k = sin k(0 + -sj— + 300)

H k  = \  Sin kC® + T  * 1805

i' = Ak sin k(0 + —  * 60) •
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Fig. 3.16 - INCREMENTAL D.C. LINE VOLTAGE TO A 50Hz M.S. WHOSE POSITIVE 
GOING CROSSOVER COINCIDES WITH FIRING TO VALVE 1

4*
(a) D.C. Voltage Ripple
(b) Incremental D.C. Voltage
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are assumed. The shaded areas in the figure represent the incremental 

blocks of d.c. line voltage resulting from the difference between the 

base case and the case with a 50Hz m.s. superimposed on the control voltage.

In Fig. 3.16(b) it is assumed that the incremental d.c. voltage 

is approximated by rectangular pulses of voltage.’ It is also assumed 

that the overlap angles remain unaltered from their balanced steady-state 

value, y .

a) The incremental d.c. line voltage consists of alternate pulses 

of amplitudes and and corresponding widths Aa^ and Aa^;

b) The phase difference betwen the series of pulses of amplitudes 

and is the overlap angle, u;

c) There is no average incremental voltage level.

3.9.1. Harmonic analysis of the incremental d.c, voltage

Initially, only pulses of amplitude are considered. These 

pulses can be classified into four different types :

1) positive pulses of width Aa^ labelled (+, Aa^);

2) negative pulses of width Aa^ labelled (-, Aa^);

3) positive pulses of width Aa^ labelled (+, Ao^);

4) negative pulses of width Aa^ labelled (- , Ac^).

The generic summation term of eqn 3.23 is used again in the 

harmonic analysis of the incremental d.c. voltage shown in Fig. 3.16.

Values of "a" and "0" to represent the train of pulses of amplitude 

according to eqn 3.23 are given in Table 3.13.
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TABLE 3.13

D.C. VOLTAGE PULSE TRAIN PARAMETERS (50Hz M.S.)

PULSE TYPE a 9

(+, Aax) Aa
Aa-

9 + 2

Aax)' Aa^
Aa

9 - 2 - 240

(+, Aa2) Aa2
Aa

9 - 60 
2

(-, Aa2) Aa2
Aa

9 - 180 - 2

The general equation corresponding to the summation of the series 

described in Table 3.13 is:

2V.
dk

kiT

kAa. Aa. Aa.
sin ---- 1 Ceos k(9 + ---) - cos k(0 - 240 - -y-)3 +

Aa, Aa, Aa2 ^
sin----[cos k(9 - 60 + ----) - cos k(9 - 180 -• ---)3

(3.116)

Eqn 3.116 can be simplified using the trigonometric identity

a n • A+B B-Acos A - cos B = 2 s m  ——  s m  —r—
2 2

to become

4V
dk

kTT

— s in  k(9 -  120) [co s k 120 - cos k(120 +<|> )cosk<{>  ̂ 1
___ (3.117)
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where is given by eqn. 3.21 and <j>s and cj>̂ are defined by eqns 3.33 and 

3.34, respectively.

The series of pulses of amplitude can be obtained from 

eqn 3.117 by replacing 0 by 9-y and byV^, i.e.

4V2 .
dk = - —  sink(9-y-120)[cosk 120 -

kir
cos k(120 + 4> )cos kef) 3. (3.118)s d

The total incremental d.c. line harmonic voltage of order k is 

obtained by combining eqns 3.117 and 3.118 :

♦

v = - —  [V. sin k(9 +> 120) + V_ s m  k(9 - y - 120) 3 xdK , _ 1 lkTT
[cosk 120 - cos k(120 + cf^cos kcf)̂ 3. (3.119)

If the overlap angle is neglected, then = 0 and y = 0.

3.9.2 Cases of particular interest

a) if k = 1 and for a negligible <J>̂, eqn 3.119 becomes :

v, 1 = -[V, sin(0 - 120) + sin(0 - y - 120)] xdl tt 1 2

[cos 120 - cos(120 + <j> )] • (3.120)

In Appendix B eqn B.48 shows that the cosine difference in 

eqn 3.120 can be approximated by

cos 120 - cos(120 + <!>)=<{> sin(120 + — - ) .s s 2

*



It can be concluded that the amplitude of the incremental 

d.c. line 50Hz harmonic voltage caused by a 50Hz m.s. is approximately 

proportional to the average of the firing angle variation 

b) Modulating signal phase shifting

If the m.s. positive going crossover coincides with the firing 

to valve 2, then the incremental voltage pulses will be identical to 

the ones presented in Fig. 3.16 but with a 60 degree shift. So, 0 in 

eqn 3.120 has to be replaced by 0 - 60°. This phase shift results in

V,, = — CV. sin 0 + V0 sir (Q-y)][cos 120 - cos(120 + <{> ) 1 dl tt 1 2 v Ts

It can be concluded that, a 60 degree phase shift in the m.s. 

corresponds to an identical phase shift in the incremental d.c. line 

50Hz harmonic voltage.

3.10 Effect of a 100Hz m.s. on the d.c. line voltage

Fig. 3.17 represents the incremental d.c. line blocks of voltage 

between the base case and the case in which a 100Hz m.s. is superimposed 

on the control voltage. The following observation followed from Fig. 3.

a) The incremental d.c. line voltage consists of pulses alter­

nately of amplitude and V^-

b) The phase difference between the train of pulses of amplitude 

and those of amplitude is one overlap angle, y .

c) All voltage pulses have the same width. Aa.

d) There are two identical train of pulses 180 degrees apart there­

fore, the lowest harmonic order is the second.

e) There is no average incremental d.c. voltage.



I

Fig. 3.17 - INCREMENTAL D.C. LINE VOLTAGE DUE TO A 100Hz M.S. WHOSE 
POSITIVE GOING CROSSOVER COINCIDES WITH FIRING PULSE 
TO VALVE 1

(a) d.c. Voltage Ripple
(b) Incremental D.C. Voltage
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3.10.1 Harmonic analysis of the d.c, line voltage

The harmonic analysis follows the same lines as for the 50Hz 

m.s. case. Table 3.14 gives the values of "a" and "0" to be used in 

eqn 3.23 to obtain the harmonic contribution of each train of pulses

TABLE 3.14

D.C, VOLTAGE PULSE TRAIN PARAMETERS(100Hz M.S.)

PULSE TRAIN a 9

Aa a nr\ Aa+ 2

„ AaAa
9 -  —

+ Aa 0 - 60 + ~  - 180

Aa
- Aa 0 - ■==■ - 1802

The train of pulses of amplitude can be combined according 

to eqn 3.23 to give

d k  kTT

2V
1 . kAar , Acu . Aa.---  s m  -——[cos k(0-6O+ ■=— ) - cosk(9- ) +

kTT 2 2 2

cos k(0-6O+ ~  - 180) - cos k(0- " 18°)]. (3.122)

For odd k's eqn 3.122 is equal to zero. For even k's and 

after algebraic manipulation yields
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Vdk = ~kiT Sin T 2, Sin - 30)sin k(e - 30) . (3.123)

The series of pulses of amplitude V  ̂can be obtained directly 

from eqn 3.123 if 0 is replaced by 0-]i and by :

,r _ "8V2 sin sin k( - 30)sin k(0-y-3O)
Vdk ~ k7r 1

for even k's . (3.124)

%

The total incremental harmonic voltage is the summation of 

eqns 3.123 and 3.124 :

8 . kAa . w  Aa r,, . . ,aVdk = ~ krF Sin 2 Sin 2---30)[V^ s m  k(0 - 30) +

+ sin k(0 - y - 30)1 for even k's . (3.125)

For small values of kAa, the following approximations can be

made:

. . kAa ~ kAaa) s m --- = —7T—
2 z

b) sin k(30 - ) = sin k 30 .

So, the amplitude of eqn 3.125 becomes

A = 4Aa
TT sin k 30 (3.126)

From eqn, 3.126 can be concluded that the d.c. line harmonic 

due to a 100Hz m.s. is approximately proportional to Aa.

*
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3.10.2 Cases of particular interest

a) if k = 2 eqn. 3.125 becomes:

v,0 = —  sin Aa sin(60 - Aa)CV. sin(20 - 60) + a2 tt 1

V2 sin(20 - 2\i - 60)] (3.127)

b) Moduxating signal phase shifting

If the m.s. positive-going crossover coincides with the firing

to valve 2, the incremental pulses will be identical to the ones in
Fig. 3.17 but delayed by 60°. ‘ If 0 is replaced by 0-60 in eqn 3.125., it now 

expresses the incremental d.c. line voltage corresponding to the new phase of 

the m.s. :*
8 . kAa . . , Aa . , fC.

Vdk = " kTT Sin ~ T  Sln k(̂ T" " 3°)[v1 sin k (e - 90) +

V2 sin k(0 - \i - 90)] for even k's . (3.128)

In the particular case of a 2nd harmonic :

Vd2 = S^n s^n ^ a “ 60) CV^ sin(20) + sin(20 - 2p) ]
* (3.129)

It can be concluded that a 60 degree phase shift of the m.s., 

in fundamental terms corresponds to an equivalent phase shift in the 

incremental d.c. line harmonic voltage.

3.11 Effect of a 150Hz m.s. on the d.c. line voltage

The incremental d.c. line voltage due to a 150Hz m.s. on the
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control voltage of a 6- pulse converter, is presented in Fig. 3.18.

The harmonic analysis follows the procedure used in the 100Hz m.s. case.

The following observations can be made on Fig. 3.18(b) :

a) The incremental d.c. line voltage consists of alternate 

pulses of amplitude and

b) The phase difference between the train of pulses of ampli­

tude and the train of pulses of amplitude is exactly one overlap 

angle, y ;

c) All voltage pulses have the same width, Aa;

d) There are three identical sets of pulses 120°apart from 

each other and so, the 3rd harmonic is the lowest possible harmonic order 

in the Fourier Analysis;

e) There is no average incremental d.c. voltage.

♦

3.11.1 Harmonic analysis of the d.c. line voltage

This analysis is based on eqn 3.23 and on the series of pulses 

of amplitude V̂ . Values of "a" and "0" corresponding to the train of 

pulses in Fig. 3.18, are shown in Table 3.15.

*



144

(a)

Fig. 3.18 - INCREMENTAL d.c. LINE VOLTAGE DUE TO THE 150IIz m s SHOWN IN 
Fig. 3.13
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TABLE 3.15

D.C. VOLTAGE PULSE TRAIN PARAMETERS (150Hz M.S.)

TYPE OF TRAIN a 0

+ 1 Aa « Aa
6 + -

+ 2 Aa 0 - 120 ♦ M

+ 3 Aa 0 - 2 4 0  + ^

The combination of the three types of pulses in Table 3.15 gives

2V, 1 . kAa r . Aa. . ,Q , Aa.v' = —:—  s m  —r—  [cos k(6+-=—) + cos k(0 - 120 + ■=—) +d k k i r  2 2 2

cos k(9 - 240 + y*)] . (3.130)

This equation is equal to zero for all k's which are not 

multiples of three. The triplen harmonic, eqn 3.130 becomes :

, 6V1 . kAa . ra Aa.
vdk = ^ 5ln^ T <05 kC9 + 2"0 ' (3.131)

If is replaced by and 0 by 0-y, eqn 3.131 can be 

used to obtain the incremental harmonic voltage corresponding to the train 

of pulses of amplitude

vmdk sin kAa
2 cos k(9 + Aa

2 - U) (3.132)

*
The total incremental voltage due to a 150Hz m.s. is obtained



146

by adding eqns 3*131 and 3^132

6 . kAa P,, . Aa. ,, , Aa .,vdk = —  sin -j- CV1 cos k(0 + y )  + V2 cos k(9 + --- p)]
kTT

Cfor k multiple of 3) . (3.133)

For small values of Aa, the sine factor outside brackets 

of eqn 3.133 can be approximated by kAa/2 therefore, the equation becomes:

Vdk = I T  CV1 C0S k 0̂ + *2”) + V2 cos k(0 + ---u)l

(for k multiple of 3) . (3.134)

It can be concluded that for small values of Aa the d.c. 

line voltage due to a 150Hz m.s. is approximately proportional to Aa.

Furthermore, a 60 degree m.s. phase shift, corresponds to 

a 60k degree phase shift of the incremental harmonic voltage of order k.

*

3.12 Relationship between Aa and d.c. line harmonic currents

Eqns 3.119, 3.125 and 3.133 give the approximate incremental 

harmonic components of the d.c. line voltage due to a 50Hz, 100Hz and 150Hz 

m.s., respectively. These equations can be used to obtain the incremental 

d.c. line harmonic currents, as explained below.

Let the d.c. line input impedance be represented by an equi­

valent impedance Z^, as shown in Fig. 3.19. For any harmonic voltage,

V,. , the d.c. line harmonic current is : dk



D.C. LINE 
MODEL

I

1

Zdk ^dk = °  L 'ne input impedan

Fig. 3.19 - D.C.-SIDE REPRESENTATION
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Idk (3.135)

Hence, it may be concluded that 1 ^  is also proportional to Aa. 

Approximate expression of the d.f. for a balanced a.c. system 

can be derived from eqns 3.135 and 2.4 as follows

Xdk/ 9dk
D.F. s ----------  (3.136)

VmZ!k

3.13 Relationship between a.c.-side and d.c.-side harmonic voltage

Assuming at the outset no overlap angle and ideal a.c. conditions, 

the d.c. line voltage is given by the difference between any two generic

where

. "n", as below:

V V - Vnm n m

V = |v 1cos (0 + 0 )n 1 n 1 n

V = m [V 1 1 m 1cos (0 + m

(3.137)

(3.138)

(3.139)

0m , 0n are, respectively, the phase angle of phase "m" and phase 

"n" (with respect to an arbitrary common reference).

Wq = fundamental angular frequency.

Vm,V amplitude of phase MmM and phase Mn", respectively, 

on the valve side of the converter transformer.
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In order to simplify the harmonic analysis of the d.c. line 

ripple due to a.c. harmonic distortions, it is assumed that this distortion 

consists of sets of 3-phase harmonic voltages, predominantly of positive 

or negative sequence. The harmonic phase voltage during each interfiring 

period, is then added to the fundamental voltage to give the total d.c. 

side voltage. The harmonic phase voltage "difference" of order "£" is 

given by:

♦

where
h - V -  vme (3.140)

n Z V cos(£0 (3.141)

m V cos(£0 (3.142)

V| = voltage amplitude of the phase sequence.

Substituting eqns 3.141 and 3.142 into eqn 3.140 and simplifying 

through trigonometry, results

Vt  = |V£ | sin U 6 + 0t )

where:

V^J = 21V | sin t
0 -0 . m n and

0 + 0n _ m n 
91 ------2---

(3.143)

The primary harmonic voltage, V^, gives rise to uncharacteristic 

harmonic voltages in the d.c. voltage. These uncharacteristic harmonics 

can be obtained by Fourier Analysis through

\ (A, cos k0 + B sin k0) 
k=l K k
+ (3.144)
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where :

A0

\  =

\  ■

2tt
2tt
V, d0 a

0
27T
V, cos k0 d0 a

0
2tt

- I V ,  sin k0 d0 TT d

C3.145)

(3.146)

(3.147)

To synthesize the d.c. voltage, the fundamental cycle can be sub­

divided into six parts each corresponding to one of the six interfiring 

periods. Therefore, to calculate and B^, the integrals of eqns 3.146 and 

3.147 are split into six sections and the partial results added to obtain 

the total solution. If the general limits of each interfiring period are 

given as 0^ and 0^+ ,̂ then and B^ for that specific period are:

\  =
cos £0. cos(£+k)0 cos(£-k)0

£+k £-k
0 .i+1

sin £0, sin(£+k)0 sin(£-k)0

0 .l
> 0 . '

£+k £-k
i+I (3.148)

\  = 2TT cos £0, s in(£+k)0 sin(£-k)8
£+k £-k

i+1

sin £0, cos(£+k)0 + cos(£-k)0
£+k £-k.

i+1
0 .i

(3.149)

Eqns 3.148 and 3,149 can be used to calculate approximately the 

d.c. side harmonic voltage caused by a particular a.c. side harmonic content. 

If more than one frequency is present on the a.c. side, the results can be
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combined by superposition

In order to appreciate the influence of eqns 3.148 and 3.149 

on the d.c, line harmonics, let:

Ai -
cos C£+k)8 cos Ct-k) 9"
£+k Z-k

ei+i

0

(3.150)

^ _ sin(-£+k)8 + sinQl-k) 8"
2 Z+k l -k

9i+l

9i
(3.151)

_ sin(£+k)6 + sinQt-k) 6" 0i+l
Z+k Z-k

(3.152)

B2 ■
cos (£+k)8 cos (f.-k)9 | 0i+l
Z+k l-k J6.l

(3.153)

Eqns 3,148 and 3.149 can now be written in terms of A^, B^

and B ̂

4 - J V

Bk= 4?lV£l

A1 cos 10^ + A2 sin Z0 ̂
>i0i+l

cos Z0 ̂ + B2 sin 10^

0 .i

i+1
0.l

(3.154)

(3.155)

For each interfiring period limited by 0^ and 9^+ ,̂ A , A2, B^ 

and B2 are constants and 0^ changes accordin2 to the phase of the primary 

harmonic voltage of order Z , The overall effect of |v̂ | and 0^ on the 

d.c. line harmonics can be better appreciated if eqns 3.154 and 3.155 are 

introduced into eqn 3.144:

*
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Vd cos £0£ + sin £.0^)cos k9 +

(B1 cos 1 $ 0 + B sin £0^)sin k0 c

Rearranging eqn 3.156 results:

v = -2. + — iv 1 yA o 9tt ' P  ' £d 2 2tt ’p I 1 I cos £0«(A cos k0 + B sin k0) +■ L -ĵ  -t 1 1

sin £$£(^2 cos k0 + B^ sin k0) C:

Letting now

A^k sin k0 = A^ cos k0 + B^ sin k0 C

A^k cos k0 = A^ cos k0 + B^ sin k0 C

eqn 3.157 can be reduced to

Vd + h  I^ 1 X K k  sint£0

which express the d.c. line harmonic voltage of order k as :

dk
V,
2 tt

A|?k sin(£0^ + k0) c

It can now be concluded that

a) The k-th harmonic voltage V , is proportional to theQK
of the primary symmetrical component, |V |̂.

*

.156)

.157)

.158)

.159)

.160)

.161)

amplitude



b) The phase of V ^ depends on £0^ which is the phase of the 

primary harmonic voltage of order

For example, the contribution of a primary second harmonic (£ = 2) 

to the d.c. line 50Hz harmonic voltage Ck=l) is given by

|V2I
vdi = T T  A21 sin(202 + «  • (3-162)

Eqn 3.162 explains how a 30 degree phase shift C= 60 degree in 

second harmonic terms) in the primary second harmonic voltage causes a 

60 degree phase shift in the d.c. side 50Hz haxuionic voltage.

3.14 Fundamental a.c-side imbalance and generation of d.c.-side

even harmonics

Let the line voltage of the converter busbar be:

By definition, the a.c. source is balanced if:

< II ,< = Va b c

CDIICO
CD

9b = 0 - 120

0 = 0 - c 240

An imbalance in one of the phases can be represented by
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AV/AQ = V f/0_f - V/i (3.163)

where V1 /9’ is an unbalanced phase voltage relative to V/9:- the balanced 

value. Using Euler’s formula :

AV/A8 = V’(cos 0f + j sin 9') - V(cos 9 + j sin 0) .

...(3.164)

Wherefrom

Av = /(V')2 + V2 - 2V'V cos(0’ - 9) (3.165)

A0 = TAuN-1 ^V'sinO' - V sin0
V Tcos9’ - V cos9

(3.166)

In what follows, the three possible alternatives are considered

a) V' = V 

9' = 0

AV cos(0' - 0)

♦ A0 TAN sin8t - sin9̂  
cos0' - cos8
l J

(3.167)

(3.168)

Simplifying ean 3.167 through the trigonometric identity

1 cos A = 2 sin A

results
8’ - 0 

2
.AV = 2V sin
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and for small values of

AV = V*(01 ~ 9) • (3-169)

It may be concluded that the amplitude imbalance AV is pro­

portional to the phase imbalance.

b) V’ t  V 
0 ' =  0

AV = (V’ - V) (3.170)

A0 = 0 . (3.171)

It may be concluded that the imbalance AV is proportional to the 

amplitude difference between balanced and unbalanced voltage amplitudes.

c) V'  ̂V 

0* V .
This case is a combination of a) and b).

It can be concluded that a fundamental imbalance may be represented 

by a balanced 3-phase set plus a superimposed voltage of the same frequency 
and of amplitude and phase given by equations 3.165 and 3.166 respectively.

Assuming that superposition is obeyed, the imbalance vector 

AV/A8 will be rectified by the converter and will contribute to the d.c.- 

side 2nd harmonic. However in practice, second order effects will be 

present. For example, other harmonics will be generated due to the shift 

o>f the a.c.— side zero crossing points and changes in overlap angles. Such 

effects should be much smaller compared to the 2nd harmonic presence. The 

effect of the 2nd harmonic on the d.f. for a m.s. at 100Hz is illustrated in

Fig- 2.19 for phase imbalance of 0%, 1% and 2% of the fundamental.

%
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3.15 Uncharacteristic harmonics in 12-pulse converters

Twelve-pulse operation is achieved from two identical 6- pulse 

converters connected to the a.c. supply through star-star(YY) and star-delta 

(YA) transformers. The phase shift between primary and secondary (here 

"primaryM is assumed to indicate the a.c.-side and "secondary" the valve 

side winding of the transformer) currents of same harmonic order in any 

one of the bridges depend on the transformer connection. Under steady- 

state and balanced conditions, the phase shift introduced by the star- 

star connection is equal to zero for harmonics of all orders. But with 

star-delta connection, a phase shift between primary and secondary currents 

is introduced. This phase shift depends on the harmonic order and on the 

harmonic phase sequence. Generally, the harmonic phase shift in the 

* primary currents can be grouped into two types :

I) Secondary phase shift, 9^, because the rectangular blocks 

of current are already shifted by 30°, as represented in Fig. 3.20(a).

II) Secondary-to-primary phase shift, 9 because the secondary 

3-phase harmonic current sets of positive and negative sequence are re­

ferred to the primary as shown in Fig 3.20(b).

The phase shifts of the first type depend on the harmonic order, k, 

and on the sign of the phase shift introduced by the converter transformer 

on the fundamental zero crossings. For a positive fundamental 30 degree 

phase shift, yields

9 = k30 . (3.172)

The second type of phase shift, is a result of the difference 

between any two vectors which are 120 degrees from each other. The sign

♦
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of this difference changes according to the harmonic phase sequence as 

follows:

02 = -30 for positive sequence
(3.173)

§ 2  ~ +30 for negative sequence .

The phase shift between primary and secondary harmonic currents, 

can be classified by the harmonic symmetrical component as presented in 

Table 3.16. These values were obtained assuming a sinusoidal a.c. supply 

and secondary currents represented by series of rectangles 120 degrees 

from each other.

TABLE 3.16

HARMONIC PHASE SHIFT IN A YA TRANSFORMER

k 01=k3O 62=±30 TOTAL SHIFT

3q-l 90q-30 + 30 90q

90q 0 90q

3q+l 90q+30 -30 90q

With no harmonic voltage imposed on the primary busbar, Table

3.16 indicates that the total phase shift between primary and secondary 

harmonic is always equal to 90q (q is an integer which depends on the 

harmonic order) as shown in the first column of Table 3.16).
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Table 3.17 gives the total phase shift obtained from Table 3.16 

as a function of the integer q.

TABLE 3.17

HARMONIC PHASE SHIFT AS A FUNCTION OF ,fqM

q TOTAL

MULTIPLE OF PHASE SHIFT

1 90

2 180

3 270

4 0

*

If the sign of the fundamental phase shift in the star-delta 

transformer is reversed, all signs in Tables 3.16 and 3.17 have to be 

reversed.

Table 3.18 gives the theoretical values of the primary current 

through the star-star and star-delta transformers of a 12-pulse converter. 

The phasor I/0_ represents the current contribution from each bridge.

The fourth column in the Table gives the total theoretical a.c. current 

of the 12-pulse bridge.

The harmonic currents predicted in Tables 3.16, 3.17 and 3.18

assume :

a) balanced and sinusoidal a.c. supply

b) equally spaced firing pulses.

*



If these assumptions are not met, harmonic components of any
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sequence may be generated. A non-equidistant firing pulse case is dis­

cussed below in connection with 50Hz m.s. superimposed on the control 

voltage of 6-pulse converters.

Fig. 3.21 shows a comparison of how the firing pulses may be 

affected by a 50Hz m.s. according to the type of transformer connection.

It is assumed that the positive going crossover of the m.s. is coinciding

TABLE 3.18

COMPOSITION OF THE PRIMARY HARMONIC CURRENT OF A 
12-PULSE CONVERTER

k SECONDARY HARMONIC CURRENT REFERRED 
TO THE PRIMARY OF THE TRANSFORMER

PRIMARY HARMONIC 
COMPOSITION (YY 6 YA)

YY YA

1 i LS l 1 / 3 21/3

2 1 / 3 1/0+90 /2I/0+4q

3 1 / 3 1/0+90 '/2I/0+4S

4 i/fi 1/0+90 /2I/6+45

5 1/0. 1/0+180 0
6 1 / 3 1/0+180 0
7 1/0 1/0+180 0
8 113. 1/0+270 /21/0-45

9 11 3 1/0+270 /2I/0-48

10 1 / 3 1/0+270 ■^i/e-45

11 1 / 3 1 / 3 2113.

12 I / i 1 / 3 2I/fl

13 1 / 3 i l i 2 1 / 3



with the firing pulse to valve 1 either of the YY- or of the YA- 

connected bridges. In Fig. 3.21(a), the continuous line represents the 

m.s. for a YY- connected bridge. The corresponding firing pulse distribution 

is also shown on the same diagram.

In the case of a YA- connected bridge, it is necessary to 

shift the m.s. by 30° to make its positive going crossover coincide with 

the firing pulse to valve 1. This is represented by the dotted line 

superimposed on the m.s. of the YY- connected bridge. The results for 

YY- and YA- connected bridges are overlapped so that, the interfiring 

period differences can be appreciated.

Fig. 3.21 (b) represents the firing pulse distribution of a 

12-pulse bridge when a 50Hz m.s. is superimposed on the control voltage.

The positive going crossover also coincides with the firing pulse to 

valve 1. If Figs 3.21 (a) and 3.21(b) are compared to each other for small 

amplitudes of m.s., it can be concluded that the firing pulse distribution 

of a 12-pulse converter is approximately identical to the firing pulse 

distribution of a YY- connected bridge superimposed by the firing pulse 

distribution of a YA- connected bridge whose m.s. is 30° shifted. This 

conclusion is important in terms of harmonic cancellation interbridges in 

12-pulse converters.

3.16 Conclusions

In this Chapter, the relationships necessary to derive a method 

of harmonic minimization based on control voltage modulation are 

established.

Firstly, a transfer function to relate control voltage ripple
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*

*

*

to d.c, current ripple is obtained. Such transfer functions have 

a low pass characteristic whose cut-off frequency is determined by a 

compromise between fast control response and negligible control voltage 

ripple. It is also established that there is an approximate linear 

relationship between small amplitudes of the modulating signal and the 

corresponding firing pulse variation, Aa. This relationship can be 

used to obtain analytically the interfiring periods.

The magritude and phase of a.c.-and d.c.-side uncharacteristic 

harmonic voltages and currents were shown to be approximately proportionally 

related to the m.s. amplitude and phase. Special attention was given 

to the effect on uncharacteristic harmonics of 50Hzv100Hz and 150Hz m.s. . 

The results are summarized below :

a) On the a.c.-side :

1) a 50Hz m.s. gives rise to predominantly second 

harmonic currents of positive sequence and causes odd harmonics of 

very small amplitudes only;

2) a 100Hz m.s. causes triplen harmonic currents only;

3) a 150Hz m.s. causes second harmonic current of 

negative sequence only.

b) On the d.c.-side:

1) For the m.s. frequencies studied, the lowest harmonic 

current present corresponds to that of the m.s. frequency.

2) For small amplitude of m.s., the d.c.-side harmonic 

voltages and currents are proportional to the amplitude of the harmonics 

present on the a.c.-side even when under open loop control.

An interesting outcome of this study is that a phase shift of 

the a.c.-side second harmonic current corresponds to one half of the phase 

shift of the d.c.-side 50Hz harmonic, irrespective of whether they were
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caused by control voltage modulation or distortions on the a.c. busbar 

voltage.

Imbalances in the fundamental voltage may be represented by 

a balanced 3-phase set plus a superimposed incremental voltage of same 

frequency corresponding to the difference between the balanced and 

unbalanced cases. The incremental voltage is rectified by the converter 

and its contribution on the d.c.-side will result basically on the 

presence of a 2nd harmonic.

Finally, it was shown that a m.s. on the control voltage of a 

12-pulse converter, causes uncharacteristic harmonic currents through 

the YA- transformer which are shifted by approximately 30 degrees with 

respect to the uncharacteristic harmonic currents of the same frequency 

through the YY- transformer. This fact explains why on the a.c.-side, 

6th harmonic currents are virtually cancelled out at the primary of a 12- 

pulse converter while 2nd harmonic currents may be present.

«

*
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CHAPTER 4

CIRCUITRY FOR IMPLEMENTATION OF CONTROL VOLTAGE MODULATION

4.1 Introduction

In h.v.d.c. transmission systems, the power flow is set to a 

desired level by means of closed-loop control. Such control is implemented 

through direct action onto the converter by advancing or delaying the 

firing instants of the individual valves, as explained in Chapter 2.

Therefore, the controller should ensure fast and stable operation, free 

from oscillatory modes and a low level of abnormal harmonic currents and, 

as a consequence, acceptable a.c. system voltage distortion levels.

In Chapter 3, it is theoretically demonstrated how a.c.-side 

voltage distortion and control voltage ripple can be associated with a.c.-side 

side and d.c.-side harmonics. The control voltage ripple is related 

to the control time constant and may be virtually suppressed by imposing 

a large time constant in the controller. The drawback of such a Large time 

constant is a slower dynamic response of the controller.
In this chapter, a circuit to select, adjust and inject a modu­

lating signal (m.s.) into the control voltage is proposed and tested. A 

transient detector connected to the output of the injection circuit inhibits 

the m.s. injection during transients. This control feature is important 

for two reasons:

a) it allows fast transient response of the control;
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b) it does not contribute to oscillatory behaviour.

In order to verify the theoretical predictions presented in 

Chapter 3, the Imperial College h.v.d.c. simulator was used. The 

experimental set-up includes the following :

a) a.c,-side harmonic injection

b) a.c.-side and d.c.-side harmonic measurement

c) injection of the modulating signal.

Modulating signals of 50Hs, 100Hz. and 150Hz were used in the
tests.

4.2 A.c.-side harmonic injection

4.2.1 Second harmonic generation

*

The second harmonic generator used, consists 

phase fullwave rectifiers each one connected in series 

a.c. supply phases through isolating transformers, as 

for phase "a". One isolating transformer at least is 

injection of d.c. current originated in the rectifying 

converter transformers. The d.c. power is dissipated

of three single- 

with one of the 

shown in Fig. 4.1 

necessary to avoid 

process, into the 

in a variable resistor

(R).
The type of second harmonic generator described above has four 

important characteristics,

1) it can be continuously adjusted from 0% to 100% of the 

a.c. supply voltage through the secondary of a 3-phase variac transformer;

¥
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2) the phase sequence can be changed by injecting harmonics 

from one phase into another;

3) the output impedance of the injection circuit is 

negligible due to the large turn ratio of the coupling transformer;

4) synchronization with the fundamental voltage is ensured.

4.2.2 Third harmonic generation
i

Third harmonic can be generated by using an unbalanced a.c. 

supply, the harmonic magnitude being dependent on the percentage of imbalance 

of the a.c. source.

4.3 Harmonic measurement

Five methods for measuring the a.c.— side and d.c.— side harmonics 

are listed below:

1) A digital storage oscilloscope with direct digital output 

to a computer;

2) A digital storage oscilloscope with analog output to a

plotter;

3) A spectrum analyser capable of measuring harmonic amplitude

and phase;
4) Implementation of the discrete Fourier transform Ĉ)FT) on 

a microcomputer whose A/D converter can be fed through active filters;

5) Implementation of the Fourier analysis on a computer system

*

whose input data can be supplied through an auxiliary microcomputer 

capable of feeding on line data.
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*

♦

Tne first method is the most direct but requires the availability 

of an expensive digital storage oscilloscope. The second method is 

lengthy, tedious and of low accuracy, though it is the cheapest one.

The third method can be lengthy, tedious and expensive. In the fourth 

method, filters may introduce phase shift which is not easily compensated. 

The fifth method gives good accuracy and it was the one chosen because of 

its easy availability.

The on-line data collection from the converter is made by a Texas 

Instruments microcomputer (model TM990/101) and fed to the ICCC-CDC computer 

system (CYBER 174 - Nos. 1.4). The link between these two computers is 

made through an intelligent terminal (CORVUS WORKSTATION - CORVUS SYSTEM 

CONCEPT) which controls the data acquisition in the TM 990/101 and also 

operates the ICCC-CDC link

Fig. 4.2 shows the block diagram of the computational arrangement 
for the FOURIER analysis of a.c.-side and d.c.-side voltages. A 

complete 50Hz cycle of each a.c.-phase voltage and d.c. line voltage is 

sampled at a rate of 80 times per cycle through four A/D converter channels 

(TEXAS 9900 FAMILY-RTY-1211). These values are stored in the microcomputer 

in hexadecimal form and then, transferred to the CDC - system. The hexa­

decimal data is transformed into decimal values on which Fourier analysis 

is performed. The block diagram of the Fourier program to execute these 

operations is presented in Fig. 4.3(a) and the program text is presented 

in Appendix C.

Fig. 4.3(b) shows the block diagram of the assembly program to 

execute channel multiplexing on the A/D converter. The program text is 

given in Appendix C<

An interface circuit between the measured quantities and the 

measuring equipment had to be implemented. Also in order to allow a



0

CONVERTER 
A.C.SIDE& DX. SIDE 

HARMONIC VOLTAGES

* *

Fig. 4.2 - HARMONIC MEASUREMENT - MAIN BLOCK DIAGRAM

170



171

*

*
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4



172

continuous monitoring of the frequency under analysis, it is convenient 

to install a filter tuned to that particular frequency. These circuits 

are described in the following sections.

4.3.1 Voltage interface

'T’he 100:1 resistive potential divider used to render the high 

voltage under measurement compatible with the measuring equipment under 

low distortion levels, is shown in Fig. 4.4(a). Resistors of high value 

and solidly grounded, provide a reasonable insulation level between the 

high voltage terminals and the voltage dividing point. The signal from 

the potential divider is then buffered through an operational amplifier 

and transmitted to the A/D converter. Similar arrangement is repeated 

for each a.c. busbar phase and for the d.c.-side voltage.

The buffered output of each potential divider can be connected 

to an active filter whose output is connected to a digital voltmeter (DVM) 

and to an oscilloscope, as indicated in Fig. 4.4(b) for phase "a”.

The DVM gives the instantaneous effective harmonic voltage and the oscillo­

scope gives the phase angle relatively to some arbitrary reference. The 

input of the active filter can be selectively connected either to any a.c.- 
phase or to the d.c.-side voltage signals.

4,3.2 Active filter

*

The amplitude of the selected a.c.-side harmonic can be very small 

compared to the fundamental. Therefore, in order to use a minimum number
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of filtering stages and, at the same time, to have a good signal fidelity, 

a 50Hz suppressor connected to a bandpass filter, is implemented as shown 

in Fig. 4.5(a).

174

4.3.3 The 50Hz suppressor

The 50Hz suppressor consists of an ..ctive bandpass filter tuned 

to 50Hz, in series with a phase shifter circuit, as shown in Fig. 4.5.

The output of the phase snifter is adjusted to be in phase opposition 

with the 50Hz- input. The whole circuit is then adjusted to allow passage 

of any harmonic frequency except 50Hz. This output is connected to a 

bandpass filter,

4.3.4 Bandpass filter

There are several possible configurations of bandpass f i l t e r s , 

i.e, gyrators, inductor-capacitor, infinite-gain multiple feedback, controlled 

source (VCVS), infinite-gain state variable and negative immitance converter 

CINIC). The last configuration (INIC) was chosen for its low sensitivity 

to component value changes as compared with other realizations and for the 

moderate number and size of the components used. However, the INIC reali­

zation does not have a low output impedance and isolating circuits must 

be used between the cascaded stages.

The voltage transfer function of a second order bandpass filter 

is given by :

%
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The network parameters are

H0 (4,3)

ton "
A W 2

(4.4") •

This filter configuration has a very high gain and a gain reduction 

between stages becomes necessary. The input resistor of the gain reducer 

has to be high enough to avoid interstage loading.

Fig. 4.6(b) shows the 3-stage adjustable filter used to select 

injection of harmonic voltage back into the control voltage. The gain 

reducer is used as a means of controlling the harmonic amplitude. The 

values of the filter components are selected in such a way that :

a) 50H.z, 100Hz and 150Hz are easily tuned ;

b) Q and £ are adjustable

c) The overall gain is controllable

The tuning of components values was carried out by defining two 

auxiliary factors as follows:

(4.5)

(4.6)

In order to allow leakage current compensation between and 

C^, factor k" was chosen equal to one.

R„
k» =

k" = C2
ci =  1 L1

♦
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where

H (s) =
IL x> w s0 s a

s + C V  ♦ «
(4.1)

Q = —Af g

0

Af

C

wo

quality factor

resonant frequency of middle range

bandpass (3dB) 

damping factor

2irfo •

Figs. 4.6(a) and 4.6(b) present the IN.IC realization of a bandpass 

filter. The INIC voltage transfer function is given by:

- Ks/R^C^

2 t 1s + s ( R
Rici R2C2 R1C2' R1C1R2C2

(4.2)

*

*

KR

Fig. 4.6(a) - [NIC FILTER STAGE
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Replacing Qq by koĵ  and combining eqns 4.4 to 4.6 results in

k< = k2Coi0R2C1l 2 C4.7)

Equating numerator and denominator of eqns 4.1 and 4.2 respectively 

results in

1 1 £0)= ---- + K
0 R1C1 R2C2 R1C2

(4.8)

H° = ‘ ^ 0 R1C2
(4.9)

Combining eqns 4.7 and 4.8 and rearranging yields

K = 1 + (4.10)

Equating 4.3 and 4.4 and using again 4.7 results in

Ho = + ^  ] ' 1 ' (4.11)

Fig. 4.7 shows the frequency response of the INIC filter for 1 

and 3 stages. The INIC one-stage frequency response is rather poor and 

3 cascaded stages had to be used.

Table 4.1 gives the component values of the circuit presented in 

Fig. 4.6. The input resistors, R^'s, are used for frequency tuning 

and the feedback resistors, R’s, are used for Q-a adjustments.

m



Phase(Dg)
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TABLE 4.1

COMPONENT VALUES OF THE INIC FILTER PRESENTED IN FIG. 4.6

FREQ ci C2 R1 R2 k» k"

(HZ) yF yF kft kQ - -

50 0 . 1 0.1 100 10 0 . 1 1

100 0 . 1 0 . 1 25 10 0.4 1

150 0 . 1 0 . 1 . 10 10 0.9 1

k.50 0 . 1 0 . 1
100
k2

10

C
MO 1

4.4 Principle of the Analogue Injection

The basic principle of analogue injection is diagramatically

presented in Fig. 4.8. A d.c. current transducer provides a signal

compatible with the reference current, I The err°t processing

unit produces an error signal by comparing I , with I The error^  do 1*0 x

signal is produced to give the control voltage, V^, which is then fed 

into three different circuits as follows :

a) Directly to the summing point;

b) To a highpass or bandpass set of filters in order to select 

the frequency or frequencies to be injected. The filtered output is fed 

into the injection circuit whose output is also directly connected to the 

summing point. The output signal from the injection circuit is referred

*
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to as the modulating signal (m.s.). The amplitude and phase of the m.s. 

can be adjusted continuously1 from zero up to maximum value. The multiple 

arrows at the input of the injection circuit indicate the possibility of 

injecting more than one signal at a time. The output of the injection 

circuit is also fed to an analogue controlled switch connected to 

ground which is operated by a transient detector.

c) To a transient detector: this circuit triggers a monostable 

as soon any appreciable change in the d.c.-line current level is detected. 

The monostable in its ON state closes the analogue switch which grounds 

the injection signal.

The overall effect of the analogue injection as proposed here,

is to select one or more harmonics present in the control voltage,

shift them, adjust their amplitude and finally, add them back to the

control voltage in such a way that their presence in is controllable.

The dashed line in Fig 4.8 indicates that the m.s. can be selected

either from I , or from V'.dc c
All blocks in the diagram of Fig. 4.8 are fully explained in 

the following sections.

4.5 Injection Circuit

The signal injection circuit and its transfer function are 

presented in Fig. 4.9. This injection circuit allows full range adjustment 

of amplitude (0, ~ ± 12V) and of angle (0° ~ 360°). The signal injection 

is enabled or disabled by an analogue switch connected across input and 

output of the inverting stage.
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a) Transfer function of the signal injection circuit

Analogue
switch

b) Injection signal circuitry

F ig . 4 .9  - THE INJECTION CIRCUIT



The drain-source ON resistance of the analogue switch has a low 

value (typically, 70ft) but it is not zero. So, the input resistor, R^, 

of the inverting stage was chosen high enough (R^ = lOOKft) to minimize 

the amplifier gain when the analogue switch is closed.

4.6 Frequency selection

The main reason for using only highpass or bandpass filters in 

the harmonic selection circuit is to block the d.c. component of the 

control voltage. The main features of these filters in connection with 

injection signal are outlined below.

a) The use of a highpass filter smooths out the control voltage 

by injecting back all its own ripple with negative signal. The simplest 

version of a highpass filter is the one presented in Fig. 4.10. The 

buffer amplifier is included to avoid interaction between the filter 

and the next amplifier stage.

The step response of an RC-filter is given by

i (t)
t

u(t) e RC 
R u(t)

V  + t > 0

0 -*• t < 0

The transfer function of the RC injection circuit is obtained 

from Fig. 4.11 and given below :

1+sT2

T2 ■ K2 ’  CR‘

(4.12)

where:
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(b) TRANSFER FUNCTION

Fig. 4.10 - HIGH PASS FILTER

Fig. 4.11 - THE HIGHPASS FILTER INJECTION
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The highpass filter injection can act as a low pass filter 

if = -1 and 0 = 0 ° .  In this case, eqn 4.12 becomes

1+sT, (4.13)

b) Bandpass filters permit selection of one or a group of 

frequencies from the control voltage ripple. The circuit of this filter 

is presented in Fig. 4.6 and is the same one used for measurement, as des­

cribed in subsection 4.3.4.

To summarize, the adjustment of the injection signal can be realized 

as explained in Table 4.2.

♦
TABLE 4.2

INJECTION SIGNAL ADJUSTMENT (f,V ,0)m

QUANTITY CIRCUIT ADJUSTED

(f) frequency 

(V ) amplitude 

(0) phase -►

High pass or bandpass filter

Gain reducer of the INIC filter

Phase shifter of the injection circuit

4.7 The transient detector

Fig. 4.12 shows the block diagram of the transient detector. Transient 

detection is based on the presence of d.c. current through the resistor of an 

RC-filter. Such current arises whenever the control voltage level is changed. 
The transient d.c. current signal is fed into an absolute value amplifier.

*
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*

*

A high-gain absolute value amplifier is necessary in order to 

cope with small or large control voltage variations of positive or negative 

slope. Also, an adjustable level detector must be used to eliminate 

from the transient detector feedback loop, variation in the current that 

should not trigger the detector. Tne output signal of the level detector 

triggers a monostable circuit which in turn, operates the analogue switch.

The blocks of Fig, 4.12 are described below.

a) Transient detection:

A low time constant RC-filter may be used as transient detector. 

Such a filter is connected to the output of che control voltage circuit 

as shown in Fig. 4.13.

The RC time constant is chosen to be much lower than the time 

response of the error processing unit circuit. Tn such circumstances, the 

steady-state oscillations of the control voltage cannot appear across the 

filter resistor and only variation of the control d.c. component will be 

detected.

The first few microseconds of transient on the control voltage can be 

approximated by a ramp voltage whose slope k may be positive or negative. 

Fig. 4.14 depicts such a transient state which may be expressed as follows:

t
1 ( +R. + i j idt = Vco + k(t - tQ) (4.14)

*0
where :

i : is the current through the filter resistor

k : approximate initial slope of the control voltage variation

V : initial control voltage level co
tQ : initial time of the transient.

*
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Fig. 4.12 - THE TRANSIENT DETECTOR

Fig. 4.13 - INDEPENDENT RC FILTER

F ig . 4 .1 4  - REPRESENTATION OF A TRANSIENT ON THE CONTROL VOLTAGE

*
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Eqn 4.14 can be solved in terms of i(t) :

_ t_
iCt) = k c u  - e RC ) . C4.15)

♦

*

It can be seen from eqn 4.15 that the current through the first 

resistor is proportional to the ramp slope, k. A small response delay 

should be expected due to the time elapsed between the beginning of the 

slope and the time when i(t) has a level sufficient to trigger the 

monostable.

b) Absolute value circuit and amplification

The signal coming from the transient detection is fed into 

a fullwave rectifier in order to obtain its absolute value (Fig. 4.15).

A high gain amplifier is used at the rectifier output in order to improve 

the transient detector sensitivity to very small surges.

c) Level detector

The output of the level detector is designed to feed TTL 

level of voltage directly to the monostable. The circuit is represented 
in Fig. 4.16.

d) Monostable

The IC-TTL SN74121 was used as the monostable circuit and 

its connection is shown in Fig. 4.17.

The ON time of the monostable is determined by : t =0.7 .isi EXT T
This time can be adjusted from approximately 8mS up to 180mS, that is 

from half a cycle up to 9.0 cycles (50Hz), approximately.
e) Analogue switch

The IC-MOS DG308 was used as the analogue switch, its connection 
is shown in Fig. 4.18.



Fig. 4.15 - ABSOLUTE VALUE CIRCUIT

Vz = 4*7 V

Fig. 4.16 - LEVEL DETECTOR
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Fig. 4.17 - THE MONOSTABLE CONNECTION
*

R2=82k Ge Diode

Fig. 4.18 - ANALOGUE SWITCH CONNECTION

*
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4. 8 Off-line tests

4.8.1 Test of the injection circuit

The circuit to simulate signal injection was set up as shown in 

Fig. 4.19. Signal frequencies, oj , from 15Hz up to 4kHz were tested with 

amplitude range from 0.0 Volt up to 10.0 Volts. The results were the' 

straightforward verification of the lowpass filter response given in eqn 

4.13. For example, the presence of a 300Hz oscillation at V , is reduced 

to about 1/40 of its original value if = 20m sec* With the same

time constant and a 50Hz signal, the reduction was about 1/6 whilst with 

20Hz signal and V w e r e  virtually identical.

*

4.8.2 Test of the transient detector

The circuit used to test the transient detector is shown in Fig. 4.20. 

Switching surges were simulated by using a square wave generator 

so that the control voltage, V^, is given by:

V» = V + V sin oat + V c co m sq

*

where

Vsq

simulates the d.c, component of the control voltage 

is the magnitude of an imposed oscillation 

is the frequency of the imposed oscillation 

square wave voltage representing sudden changes on 

the control voltage, V^.
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v=V SinCOt m
Cl •2\1F

Injection
circuit
fFf S- ii-9)

R. '
p100k

Summing
point

Fig. 4.19 - TEST OF TI1E INJECTION SIGNAL

RtC,= Time constant of the injection filter.
R C  - Time constant of the transient detector.

Fig. 4.20 - TEST OF THE TRANSIENT DETECTOR



Fig, 4,21 shows a typical output of the control voltage before 

and after the summing point of Fig, 4.20.

The square wave amplitude simulating transient surges was varied 

within 0.2V to 5 V, the range of values used in the IC-h.v.d.c. model con­
troller. It was confirmed that different levels of V do not affectco
the output ripple. Only when is large enough to cause triggering of 

the monostable does the output control voltage, V , become the replica 

of V^. In this case, the replication of the input is only interrupted 

for short periods when the monostable changes its state from ON to OFF 

and to ON again, Otherwise, Fig. 4,21 is a typical input-output 

pattern shape of signal injection irrespective to the V level used.

Numerical results are not presented because they are the straight­

forward verification of the RC-circuit switching principles. The time 

elapsed between the square wave step and the analogue switch closure 

was not more than 100 ysec for the cases studied.

4.9 Tests on the d.c. transmission model

The general condition under which these tests were performed,

are:

SCR = °°

line Voltage = 160V

I, = 1.5A dc
a = 15°

Controller gain = 100

^OFF = l^Omsec (7.5 fundamental cycles)
Closed-loop tests
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4.9.1 Frequency selection

All tests presented in Chapter 5, use selection of only one 

frequency from the control voltage ripple and, for this reason, no 

examples of the bandpass filter selection are presented here. Fig. 4.22 

shows how the control voltage can be smoothed out by injecting back its 

own ripple, as explained in Section 4.6.

4.9.2 Transient detector

*

Operation of the transient detector was tested under several 

a.c.- and d.c.-side conditions of the converter. Fig. 4.23 illustrates 

the case in which a square wave is superimposed on the reference current 

I ^ which, due to the high gain of the controller, causes a ±5 Volt 

amplitude perturbation on V . This severe test shows that:

1) From practical point of view, the transient detector operates 

instantly after the surge has occurred even under very severe conditions.

2) Vc is a good replica of outside the t^pp interval. During 

tQpF> The controller is able to react freely to any surge condition under 

its own time constant which can be much smaller than that of the injection 

circuit. After t^pp has elapsed, the injection circuit switches on again 
causing a damped oscillation on V . This small amplitude oscillation 

has little effect on the d.c. current ripple.

3) Comparison between the transients started at instants

and t^ shows that the transient detector reacts satisfactorily for either 

positive or negative AV^.

4) Due to the large time constant of the m.s. selection circuit, 

a. decaying d.c. voltage remains across the injection circuit output
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Fig. 4.22 - CONTROL VOLTAGE RIPPLE
i(a) 'Before Summing Point (Vc)

(b) After Summing point (V )

%

Fig. 4.23 - CONTROL VOLTAGE DURING A TRANSIENT
i

(a) Before Summing Point (,VC)
(b) After Summing Point (V )c

b

*
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terminals after each transient. To prevent this from affecting the 

control voltage, t^pp has to be long enough so that the longest expected 

transient has decayed. Nevertheless, if the transient condition still 

persists after t^pp has elasped, the transient detector will restart

the S ff Period-

Tests with small system disturbances, e.g. a 10% change in the 

d.c.-line resistance were sufficient to activate the transient detecto'r.

4,9.3 Effects on the d.c.-side voltage

Injection of a closed-loop m.s. into the control voltage has a 

very pronounced effect on the d.c. line voltage,. This is experimentally 

confirmed by the minimization of 50Hz and lOOH.z harmonics clearly present 

on the d.c. voltage ripple shown in Fig. 4.24 and virtually eliminated 

in Fig. 4.25.

4.10 Conclusions

This chapter deals with the circuitry necessary to implement 

the generation, control and modification of the a.c. - side harmonic 

content dealt with in Chapter 5.

Presence of second harmonic is obtained from an adjustable 3-phase 

second harmonic generator based on the effects of fullwave rectifiers 

on the phase current. The third harmonic is obtained from a.c. supply 

imbalances.

The a.c. busbar harmonics are continuously measurable and observable

*



Fig. 4.24 - d.c. VOLTAGE RIPPLE WITHOUT CONTROL m.s.

*

♦

Fig. 4.25 - d.c. VOLTAGE RIPPLE WITH CONTROL VOLTAGE RIPPLE

%
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on a conventional oscilloscope and on a DVM by using a purpose built 

bandpass filter. The frequency spectrum of each phase and of the d.c. 

voltage are simultaneously obtained from an on-line computational arrange­

ment which can perform Fourier analysis and phase sequence decomposition.

It is shown how the control voltage ripple can be modified by 

introducing in the frequency selection circuit, an RC-filter with large 

time constant. A transient detector ensures that the control time 

constant is temporarily restored to its conventional value so that 

transients in the d.c.-side current are treated as usual. These 

transients always leave some residual d.c* voltage across the output of 

the injection circuit which can have undesired effects on the control 

voltage. To prevent this the off-time of the injection circuit, t p,- 

has to be adjusted to a value equivalent to the time constant of the high- 

pass or bandpass filters.

Tests on the d.c. simulator using closed-loop m.s. have shown 

that the d.c* voltage ripple is mostly dependent on the control voltage 

ripple. It was also shown that this m.s, can be obtained from the control 

voltage ripple and that its amplitude and phase are controllable and 

locked to the d.c. line current.

♦

♦
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CHAPTER 5

HARMONIC MINIMIZATION METHOD AND EXPERIMENTAL RESULTS

5.1 Introduction

The use of the d.f. technique to predict limit cycle oscillations 

synchronized with the a.c. system was discussed in Chapter 2. i'he 

d.f. results were obtained from the steady-state control voltage 

modulation by a signal of known amplitude, frequency and phase and 

from measurements of the d.c.-side harmonic of the same frequency.
«

Uncharacteristic harmonics were experienced on the a.c.-side and 

d.c.-side as a result of a m.s. on the control voltage. In Chapter 3, 

approximate relationships between these uncharacteristic harmonics 

and the m.s. as well as the relationships between d.c.-side un­

characteristic harmonics due to a.c.-side harmonic distortion, were 

obtained. A circuitry to implement the m.s. injection into the 

control voltage was described in Chapter 4.
* In this chapter, a general description of the harmonic mini­

mization method based on control voltage modulation, is presented. 

Experimental confirmation of the method and of the approximate 

relationships obtained in Chapter 3 are also presented.

In order to show how the m.s. remains locked to the minimized

a.c.-side harmonic and to compare converter operation with and 

without m.s. on the control voltage, the Fourier analysis of the 

a.c.-side and d.c.-side voltage of the h.v.d.c. simulator, were 

# carried out and the results are discussed for 50Hz, 100Hz and 150Hz m.s.



In all tests, the m.s. is always derived from the d.c.-side
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current ripple.

5.2 Harmonic minimization by control voltage modulation

The harmonic content of the converter busbar voltage is a 

combination of harmonics caused a) by the converter station itself 

and b) by other loads also connected to the converter busbar.

As suggested in Chapter 2 and discussed in Chapter 3, there is a 

virtual independence between harmonics caused by a) control 

voltage modulation and b) a.c.-side voltage distortion.

In strong systems (high SCR) uncharacteristic harmonics are 

fairly low, except in the case of a non-sinusoidal a.c.-supply.

In weak systems (low SCR), the harmonics present in the converter 

busbar may be of considerable amplitude. If the harmonics generated 

by the converter could be varied by firing angle modulation (as 

explained in Chapter 3) and if they were adjusted to be in approximate 

phase opposition with the harmonics originated in the a.c. system 

itself, then the overall level of harmonic presence on the converter 
busbar is minimized.

The converter busbar harmonics change according to the operating 

conditions of the a.c./d.c. system and the m.s. must be corrected 

whenever a variation occurs in amplitude and/or phase of the harmonic 

being minimized. In a practical operation, such correction must 

be continuous, i.e. the m.s. has to be locked to the minimized harmonic.

The relations developed in Chapter 3, show that a given m.s.

%
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has an approximate relation with some a.c.-side harmonic frequencies,

so that,with in certain limits, the m.s. amplitude and phase can be

locked, to the a.c.-side harmonic. The locking mechanism can be

understood with the help of Fig. 3.1 as follows. The a.c.-side

harmonic distortion is transferred to the d.c.-side through the con- 
I

verter bridge (as demonstrated in Section 3.13) causing d.c.-side 

harmonic currents defined by the d.c.-line input impedance (Section 

3.12). These harmonic currents are transferred to the converter 

through the d.c. current transducer (Section 3.2). Due to the 

lowpass characteristic of the d.c. current transducer and of the con­

troller itself, the control voltage will contain harmonics of low 

orders only, which will be fed into the injection circuit whose output 

is the modulating signal (Section 4.4). These relationships were
»

experimentally verified for the small amplitudes of m.s. (Aa<6°) and 

the results are discussed in the next sections.

5.3 Relation between m.s. and uncharacteristic harmonics

As discussed in Chapter 3, a.c.-side harmonics of several 

orders are excited by the presence of a m.s. . The tests performed 

on the IC-h.v.d.c. simulator were designed to show that the amplitude 

of these harmonics are approximately proportional to the m.s. for 

small amplitudes as examplified for a 50Hz m.s. in Fig. 5.1. The 

m.s. amplitude was varied from 0.0 to 0.5 volts (Aa=0°~10°) and the 

a.c.-side harmonic amplitude were monitored on a spectrum analyser

(model hp No. 3 5 8 0 A) . The computer program (described in Section 2.7)

*
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m

was, also run with the system parameters of Table 5.1. Unless 

otherwise indicated, all uncharacteristic harmonics present at the 

converter busbar for Vm = 0^ have their origin in the network itself 

and were not artificially injected in any way.

As shown in Fig. 5.1, an increase in the amplitude of a 

50Hz m.s. causes a proportional increase in the a.c.-side even harmonics 

whilst odd harmonics are minimally affected. This proportionality 

is good up to = 0.3 Volts (Aa = 6°). Ejyond that point the 

relationship becomes non-linear.

Included in Fig. 5.1 are also the a.c.-side harmonics predicted 

theoretically by harmonic analysis from the computer program for similar 

conditions except that the a.c. power supply is assumed to be purely 

sinusoidal, a situation clearly not obtained in a power systems 

laboratory.

Fig. 5.2 shows the effect of the m.s. phase on the 

a.c.-side harmonics when a fixed m.s. amplitude = 0.3 Volts is 

used. Again, even rather than odd harmonics are mainly affected.

The irregularities on the curves in Figs 5.1 and 5.2 are believed 

to be due to the unavoidable interaction between harmonics generated 

by the m.s. and the harmonics naturally present in the a.c. system.

This results in harmonic magnification or reduction according to 

relative phase differences. For example, in Fig. 5.3 the m.s. phase 

was set at 225° to give at the same time minimum second and fourth 

harmonics (see vertical line in Fig. 5.2). The m.s. amplitude was 

then varied from 0.0 to 0.15 Volts. A minimum second harmonic is 

achieved for V = 0.08 Volts but at the expenses of a drastic increase 

in the 6-th harmonic. In Fig. 5.4, the m.s. was adjusted to give 

a minimum 6-th harmonic (approximately zero) and reduced 2nd
*
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TABLE 5 a  

SYSTEM DATA

Converter rated output

d.c. voltage

rectifier side 70.4V
inverter side 42.5V

d.c. current 2. A
SCR for z = (1.94+j60.7)/phase 3.5

Converter transformer 220W
rating 100/3-/63V
reactance 0.77pu
resistance 0.877pu
turns ratio 2.75

Control setting

nominal firing angle 15°
nominal estiriction angle 20°
gain 8.

Smoothing reactor [per station)

resistance 1.6ft
inductance 0.3H

D>.c. transmission line (T-model)

resistance 14ft
inductance 0.2 H
capacitance 0.

(Relevant differences from the system data above are indicated in the diagrams)
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and 4-th harmonics. The 2nd harmonic reduction in this case is 

about 30% only. Obviously this ad hoc procedure is not a convenient 

way of selecting and adjusting a m.s. to obtain harmonic minimization. 

An alternative procedure is described later.

For small amplitudes, the a.c.-side harmonics are moderately 

locked to the m.s. . This is demonstrated for an a.c.-side second 
harmonic of positive sequence which was minimized by a 50Hz m.s. '.

In order to reduce the negative sequence level from the a.c. system, 

a positive sequence from the second harmonic generator was injected 

into the d.c. simulator converter busbar. The 50Hz m.r. was then 

varied in amplitude and phase. To monitor the results, a four- 

trace oscilloscope was used to display simultaneously :

a) d.c.-side voltage ripple;

* b) 50Hz m.s.;

c) a.c.-side second harmonic obtained from the output 

of the INIC filter (described in Section 4.3 );

d) firing pulse to valve 1.

The amplitude and phase of the signals shown in Figs 5.5(ii) 

and (iii) are relative to the amplitude and phase of the signal in 

Fig. 5.5(i). Figs. 5.5(i) and (ii) show that doubling the m.s.

* amplitude, doubles the a.c.-side second harmonic without affecting 

appreciably the relative phase shift. Also, a 180° phase shift in 

the m.s., cause a 90° phase shift in the a.c.-side second harmonic

(or 180° in second harmonic terms) without noticeable variation on the 

relative amplitude. This was theoretically predicted in Section 3.6.

To show the effects of a.c.-side harmonics on d.c.-side 

harmonics, the following experiment was carried out. The a.c.- 

side negative sequence second harmonic was gradually increased through

♦
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Fig.  5 .5  - LINEARITY BETWEEN A 50Hz M.S. AND THE A.C.-SIDE 
2nd HARMONIC
(a) D.c.  Voltage Ripple
(b) Modulating Signa l  (50llzJ
(c) A . c . - s i d e  2nd Harmonic
( f) F ir ing  Pulse to Valve l
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the second harmonic generator up to about 20% of the fundamental 

amplitude. As a result, the d.c.-side 150Hz harmonic voltage in­

creased proportionally. Similarly, the second harmonic of positive 

sequence gave rise to a proportional d.c.-side, 50Hz. These effects 

are illustrated in Figs. 5.6(1) to (III). Fig. 5.6(1) shows the 

relative d.c.-voltage ripple and its corresponding a.c.-side second 

harmonic of predominantly positive sequence which was naturally present 

in the converter busbar. Figs. 5.6(11) and (III) shows the d.c.- 

voltage ripple affected respectively by a negative and a positive 

sequence second harmonic.

m

5.4 Selection and adjustment of a m.s.

*

Most of the harmonics excited by control voltage modulation 

are not injected into the a.c. system because:

a) tuned filters are provided for characteristic harmonics 

of low orders, and highpass filters (low Q) are 

usually provided for harmonic orders higher than the 

12-th^ ;
b) harmonics close to the cut off frequency of the filters 

are also drastically reduced;

c) of harmonic cancellation in 12-pulse converters.

For these reasons, the second, third and ninth a.c.-side 

harmonics are of special importance when using m.s.'s.
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l;ig .  5 . b - EFFECTS OF HIE A.C.-SIDE 2nd HARMONIC ON THE D.C. VOLTAGE RIPPLE
(.a) Mo a. c . -  s i  do 2nd Harmonic Injec ted (re f ere nc e)
(b) P o s i t i v e  Sequence 2nd Harmonic
(c) Negat ive Sequence 2nd Harmonic

(I)  D.c.  Voltage Ripple  
(111 A . c . - s i d e  2nd Harmonic
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Selection of the appropriate m.s. involve three tasks:

1) Identification of the frequency and phase sequence of 

the a.c.-side harmonic to be minimized;

2) incremental analysis of the m.s. effects on the a.c.- 

side voltage (as explained in Chapter 3);

3) adjustment of the m.s. amplitude and phase in such a 

way that the selected a.c.-side harmonic is reduced to 

a minimum value in all three phases.

Table 5.2 gives the m.s. required for minimization of second 

and the third order harmonics. Note the correspondence between Tables

5.2 and 2.1.

TABLE 5.2

M.S.'s to minimize a.c.-side harmonics

M.S. HARM. PHASE
FREQ. ORDER SEQUENCE

50Hz 2nd +

100Hz 3rd •
150Hz 2nd -

Wrong selection of m.s. could result in :

V

1) harmonic minimization in one phase with harmonic 

magnification in the other phases;



2) harmonic minimization in the three phases but with 

harmonic magnification of other orders.

In practice, the correct adjustment of the m.s. amplitude 

and phase could be made through four steps:

1) injection into the control voltage of a very small

amplitude of the selected m.s. (e.g. = 0.1 Volts);

2) tuning of the m.s. phase to minimize the selected 

a.c.-side harmonic;

3) increasing of the m.s. amplitude until the a.c.-side 

harmonic has reached its minimum value;

4) convergence to an optimum reached through successive 

applications of steps 2) and 3).

Examples of harmonic minimization are given in the next

sections

5.5 Examples of harmonic minimization

The a.c.-side and d.c.-side harmonics presented in this section 

were obtained from the computer program described in the Section 2.7 

with the data given in Section 5.4 for 50Hz, 100Hz and 150Hz m.s. .

The practical tests were performed on the I.C.-d.c. simulator using 

similar parameters and quantities as for the theoretical studies. In 

this section, the practical tests for 100Hz and 150Hz m . s .  are only 

briefly presented whilst in the next section, an example using a 50Hz m.s. 

is described in greater detail.
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5.5.1 Positive sequence second harmonic

A 50Hz m.s. is used here to minimize the a.c.-side positive 

sequence second harmonic. Amplitudes of the a.c.-side 2nd harmonic 

and d.c.-side 50Hz harmonic are shown in Fig. 5.7(a) for several values 

of m.s. phase, <|> , between 0° and 360° and a constant m.s. amplitudeK
= 0.1 Volts. The approximate sinusoidal shape of the curves is due

to the relative difference between the variable m.s. phase and the constant

a.c.-side harmonic phase. The minimum content is reached for <J>̂ = 108°.

Fig. 5.7(b) shows the same two harmonics as above except

that now the m.s. phase is kept constant (cj)̂ = 108°) and the m.s.

amplitude is varied from 0.0 to 0.7 Volts. A minimum a.c.-side 2nd

harmonic is obtained for V =0.4 Volts.m
* The approximate linear decrease in the d.c.-side 50Hz is

explained by the phase opposition between the d.c.-side 50Hz caused by

converter busbar voltage distortion and the 50Hz caused by firing angle

modulation. It can be concluded that a minimum d.c.-side 50Hz harmonic

voltage does not necessarily coincide with a minimum a.c.-side 100Hz.

Therefore, for a V^ higher than 0.4 Volts, the second harmonic injected

by the converter into the a.c. system becomes increasingly imbalanced

4 due to an increase in Act, as predicted in Section 3.6. For example,

if V =0.4 Volts, the harmonic imbalance in terms of second harmonic 
m

is ± 16° (=2 * 0.4 Volts * 20 deg/Volt), that is the phase imbalance 

m<?y be of 32° (=2x16°) .
The 3rd and 9-th a.c.-side harmonics are not shown in Fig.

5.7 because their values were lower than the minimum value the 

optimized computer program is able to produce, that is they are less 

than about 1/15 of the highest harmonic order present on the spectrurrf^ .
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5.5.2 Negative sequence second harmonic

Here a 150Hz m.s. is used to minimize the a.c.-side negative

sequence second harmonic. The a.c.-side 100Hz and d.c.-side

150Hz harmonics are plotted in Fig. 5.8(a) as a function of the m.s.

phase for = 0.1 Volts. The minimum amplitude of the a.c.-side

100Hz is for - 36°. In Fig 5.8(b) the same harmonics are plotted

for d>. = 36°" and values of V from 0.0 to 0.3 Volts. The m.s. amplitude rk m r
for a minimum a.c.-side 100Hz is about V = 0.12 Volts. In this case.m
the choice of <j>̂ did not produce a.c.-side phase opposition between 

the 150Hz caused by busbar voltage distortion and the 150Hz caused by 

firing angle modulation and as a consequence, for V^ > 0.12 Volts the 

d.c.-side 150Hz voltage increases approximately linearly with V . The 

reasons why phase opposition was not kept for V^ > 0.12 Volts was not 

well understood.

The oscilloscope displays obtained from a d.c. simulator 

are shown in Fig. 5.9, and provide a comparison between the a.c.-side 

2nd harmonic when the control voltage is subject to a 150Hz m.s. and 

when the c o nv e n t  i onal control voltage is used.

*

5.5.3 Third harmomic

A 100Hz m.s. may be used to minimize the a.c.-side 3rd harmonic 

present on the converter busbar. In this case the converter trans­

former deserves especial consideration.

Third harmonic is usually of zero sequence, and therefore 

it should be blocked by YA-transformers and practically ,
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with m. s.

a

b

c

d

*

without m. s.

*

Fig. 5.9 - PRACTICAL EXAMPLE OF A.C.-SIDE 2nd HARMONIC MINIMIZATION 
BY A 150Hz M.S.

(a) D.c. Voltage Ripple
(b) Modulating Signal (150Hz)
(cl Negative Sequence 2nd Harmonic
(d) Firing Pulse to Valve 1
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*

blocked by YY-transformers^1**1 . However, as shown in reference 

[13], the a.c.-side 150Hz is mostly dependent on the relative 3rd 

harmonic current distribution through the secondary windings. For this 

reason, the 3rd harmonic may not be very sensitive to a 100Hz m.s. 

amplitude although sensitive to the m.s. phase or vice-versa, as can be 

observed on the Fourier analysis plots presented in Figs 5.10 and 5.11 

(for = 180°). This fact diminishes the possibility of 3rd harmonic 

minimization by a 100Hz m.s. . However, this modulating signal may 

still be useful for other situations such as :

a) 3-phase third harmonic minimization when a specific 

primary current distribution for which there is some <J)̂ such that

the 3rd harmonic produced by the converter can oppose the 3rd harmonic 

already existing in the converter busbar;

b) Amplitude equalization in the three phases by redis­

tribution of the harmonic levels.

A practical example of amplitude equalization is presented in 

the Fig. 5.12. The m.s. phase is set to ^  - 324° (V = 0.4 Volts)

for which an equivalent 3rd harmonic amplitude is obtained for the 

three phases (Fig. 5.12(a)). The m.s. amplitude was varied from 0.0 

to 0.2 Volts and plotted with the third harmonic in Fig. 5.12(b).

For V = 0.12 Volts, the 3rd, harmonic relative phase and amplitude 

were, for phases MaM, "b" and McM, respectively :

V3a = 0.26/0°

V„ = 0.23/266.4 3b ------
V3c = 0.26/302.4 .
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An appreciable reduction of the high level of 3rd harmonic 

in phase "a" was thus achieved at the expense of a moderate increase in 

phase "c" harmonic level. It can be considered that under certain 

circumstances of imbalanced third harmonic presence in the a.c. 

supply, m.s. injection could equalize the harmonic levels.
♦

5.6 Example of in.s. locking onto an a.c.-side harmonic

The example described in this section shows that the m.s. 

adjusts itself to compensate, variations in the harmonic source. A 

50Hz m.s. is used to minimize an a.c.-side second harmonic of positive se­
quence. The d.c. simulator was set up as described in Table 5.1. The 

w
results presented in Table 5.3(a) are for no m.s. and a 2nd harmonic

level about 5.47% of the fundamental. With m.s. optimally adjusted,

the second harmonic of the positive sequence was reduced to about 1.68%

as shown in Table 5.3(b). A general amplitude reduction in several

other a.c.-side harmonics is also noticed although there is a slight

overall increase on the d.c.-side harmonics. The m.s. amplitude for

this case is V = 0.12 Volts, m
Table 5.4(a) shows the Fourier analysis result with a reduction 

of 44.7% in the 2nd harmonic level. The m.s. loop was subsequently 

energized without modifying its setting, and it was noted that the 

m.s. amplitude was = 0.03 Volts. Fourier analysis for this case

is presented in Table 5.4(b) where it can be seen that the 2nd 

harmonic of positive sequence is still attenuated.

*



M00H060
HARM,
ORDER

SEQ. POS, 
AMPLITUDE ANGLE

SEQ. NEG. 
AMPLITUDE ANGLE

SEQ. ZERO 
AMPLITUDE ANGLE

1 102,8692 -.4627 .4304 -34.7253 3,3946 161.5221o 5,4691 86.3738 .7236 166,3064 .1224 -31,2273
3 1,6775 -176,4160 1.3461 -150.6948 1.0211 178,7376
4 .5531 36.4679 .4925 53.1683 .2399 177,9361
5 ,4809 -141,2732 ,4495 50.0025 ,7183 4,5513
6 ,6825 50,3478 .6711 138.6076 .1413 -55 5342
n/ ,5922 20.7810 ,2886 -47.0679 ,3855 -139,97818 .2975 156,5488 .0557 97,6832 .0848 -172,7531
9 .3884 -74.7343 ,2133 25.2246 .1884 15.0175

10 , 1760 92,3610 .1332 171.6095 .1053 -98.9534
11 ,2604 -41,8001 ,3750 -41.4C57 .1531 136,2949
12 . .1692 80.1394 .1661 152.8818 .0509 -44,5686
13 .4188 -63.1041 ,0668 21,7422 .0782 -52.9768
14 ,1229 -173.4039 ,2032 -131,1472 .0419 -35,3396
15t .1171 48.3867 .1260 66.3793 ,1593 106,2272

D.C.-SIDE HARMONIC VOLTAGES

FOURIER COMPONENTS
AMPLITUDE PHASE

1 ♦ 7045 
.2047

195.580 277,50
3 ,1629 134.73
4 .1091 123.31
5 .1131 342.03
6 ,8446 210.44
7 .1587 260.30
8 .0496 43,67
9 .0159 313,00

10 .0692 4,86
11 ,0797 166.67
12 ,1852 59.68
13 ,0172 18.58
14 ,0108 177.68
15 .0224 354.41

DC COMPONENT = 70.4000

TABLE 5 .3 (a )  -  A.C.-SIDE AND D.C.-SIDE FOURIER ANALYSIS
WITHOUT M.S. (Vm = O.O)
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M11H060

HARM*
ORDER

SEQ. POS, 
AMPLITUDE ANGLE

SEQ, NEG. 
AMPLITUDE ANGLE

SEQ, ZERO 
AMPLITUDE ANGLE

1 101*8194 -1.3401 2.1152 12.1113 4.3187 153.3442
9 1,6842 106.9985 1 . 2 0 1 1 -177.4137 .4124 36.3900
3 *3943 50.9418 1.2322 -171,9135 1.7221 150,1799
4 .6831 106.5403 .6761 -13.2282 .1293 69,9102
5 .5808 -173.8147 1.0178 49.3841 .8865 -26.0570
6 .9899 6.4455 .7733 153.2064 .1400 -102.1322
7 1.0850 22.9023 ,1126 166,1964 .4036 -141.55128 .6614 -143.7984 ,2755 -87,6151 ,1341 43.6628
9 .1650 -179.5470 .3581 10,3014 ,2430 -44.0297

1 0 .2750 -71.4456 .1612 -73.7772 .2027 -60.8487
11 .3295 -15,0247 .2311 -88.1766 .1150 21.4764
1 2 .1258 -8.1811 .1097 -139,8997 .0505 35,8898
13 ♦ 5663 -118.9689 .1417 -28.9948 .2456 -123,3561
14 .1231 -134,9814 , 0866 94,0425 ,1975 -117.1675
15 .0758 7.0944 .1378 -169,3889 .0818 -1.3274

D .C .-S ID E  HARMONIC VOLTAGES

FOURIER COMPONENTS

AMPLITUDE PHASE

1 .7983 171.979 . 2 1 0 1 280.13
3 .3388 144.68
4 . 1 1 2 2 57.67
5 .1163 263,58
6 .9416 198,54
7 ,0709 23.10
8 .0298 198,22
9 ,0465 1 , 1 1

1 0 .0228 221,30
11 ,1027 129,31
1 2 ,1983 26.55
13 .0237 316,35
14 .0154 251.13
15 .0333 51.13

DC COMPONENT = 70.4000

TABLE 5.3(b) - A.C.-SIDE AND D.C.-SIDE FOURIER ANALYSIS
WITH. M.S. (Vm  = 0.12 Volts)



SYMMETRICAL COMPONENTS

HARM* SEG. POS* SEG. NEG* SEG, ZERO
ORDER AMPLITUDE ANGLE AMPLITUDE ANGLE AMPLITUDE ANGLE

1 101*8660 -1.1387 1.5468 34,4340 3,3266 159.78249 3.0245 105,3405 1,0332 175,9802 ,0929 - 135,4355
3 1*0115 124.6137 ,6634 -140.0708 1.4591 147.,7619
4 .3911 16.6836 .2985 -55.5138 ,0566 53,1938
5 .1827 -22.3964 ,4799 80.0871 ,7170 -2.3723
6 .1695 -25,8176 .5217 164,1423 .0949 -70.5303
7 .4410 20,7461 .1208 104,4003 .3435 - 138,1550
8 .5266 -173.4906 ,1916 34.3612 ,0250 -77.7035
9 .1959 37.0694 .3648 44.1737 ,1235 - 171.0494

1 0 .2392 57,9732 ,2629 -49.7052 ,0236 17.5564
11 .3187 7.3400 ,3576 -64.6177 ,0337 98,9774
1 2 .2400 -35,2922 , 1 2 2 2 -166,7872 .0839 -13.8116
13 .5038 -93.5229 ,1191 175,2063 ,1823 -79.9673
14 .0226 87,1220 ,0953 105.8566 .0618 16.3449
15 .0556 -175.2156 . .1834 39,9449 .0526 -79.5568

D .C .-S ID E  HARMONIC VOLTAGES

FOURIER COMPONENTS

AMPLITUDE PHASE

1 ,4538 176.489 ,2136 274,67
3 ,2331 122,17
4 .0485 79,35
5 .1314 299,50
6 ,8555 205.16
7 -.1276 296,05
8 ,0298 229,94
9 .0325 309.79

1 0 .0271 195.08
11 .0834 125.76
12 .1719 50.74
13 .0392 141.14
14 .0391 37,64
15 ,0574 276,56

DC COMPONENT = 70,4000

TABLE 5 .4 ( a )  -  A.C.-SIDE AND D.C.-SIDE FOURIER ANALYSIS
WITh LOWER A.C.-SIDE 2nd HARhONIC LEVEL
WITHOUT M.S. (Vm = O.O)
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M03H020

SYMMETRICAL COMPONENTS

HARM*
ORDER

SEG. POS* 
AMPLITUDE ANGLE

SEG* NEG. 
AMPLITUDE ANGLE

SEG. ZERO 
AMPLITUDE ANGLE

1 102*6453 -.7732 ,8385 -41,1034 3.7933 149,35079 1*4343 172.3152 1.3935 -131.8895 ,0835 42,0759
3 1*2896 -144,7391 *6091 -132.4763 2.0480 139.7527
4 *6632 -79.3747 .6122 18.4040 .1343 -10.2912
5 ,3616 -29,9920 ,9801 60.1299 .8566 -18,25126 ,6136 24,6422 ,3023 127.7171 .2645 173,4623
7 .9619 33.3730 .2532 54.0468 .5055 -153*06198 ,2198 -140,7254 ,1350 148,0400 , 1 1 2 0 69,1789
9 . 2 2 1 0 62,0662 ,2575 119,6238 .1226 -142,744510 .2520 135,6143 .2051 -104,3584 ,0535 -159,2974

11 ,0884 -169.7131 ,3298 -80,7366 .0877 109,85101 2 ,1090 -153.9783 ,1918 -152,5632 ,0203 -47.8987
13 ,4916 -101,5096 ,1875 -60,7524 .1791 -63♦ 7008
14 ,0639 -147,2024 .0951 22,1170 .0347 115.7088
15 .0549 -45,5106 .1572 15.4111 ,0756 29,7121

D .C .-S ID E  HARMONIC VOLTAGES

FOURIER COMPONENTS

AMPLITUDE PHASE

1 ,4949 162.979 ,1662 293.23
3 ,4261 134,98
4 .0995 116.88
5 , 1 0 1 2 279.30
6 .8820 205.24
7 .0794 33,54
8 .0481 40,00
9 .0149 313.75

1 0 .0277 33.63
11 .0582 117.84
12 ,1722 49.52
13 .0585 274.04
14 .0591 273,05
15 ,0581 235,23

DC COMPONENT = 70,4000

TABLE 5 .4 (b )  -  A.C.-SIDE AND D.C.-SIDE FOURIER ANALYSIS
WITh LOWER A.C.-SIDE 2nd HARMONIC LEVEL
WITH M.S. (Vm = 0 .0 3  V o lts )

*
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*

The following factors should be kept in mind when assessing 

these test results:

1) The IC-d.c. simulator is supplied from the laboratory 

mains whose harmonic content changes from instant to instant according 

to the vagaries of the other laboratory experimenters. To minimize 

such extraneous effects some testswere performed at night. In any, 

case there was no guarantee that the a.c. system conditions for the 

successive test were identical;

2) The second harmonic generator used does not provide a 

pure sinusoidal output therefore the level of other harmonics may be 

affected by the output level of the generator;

3) The Fourier analysis is based on data sampled within 

one 50Hz cycle only, therefore spurious noise could affect the results;

4) No lowpass filters were used to reduced the effect of 

high on low frequency orders ("foldover effect”).

*•

5.7 Conclusions

It was confirmed experimentally that, within limits the a.c.- 

side harmonics are related in phase and amplitude to the m.s. and that 

there is a frequency relation between a.c.-side and d.c.-side harmonics 

of specific orders and phase sequence. These conclusions were used 

to establish a harmonic minimization method based on control voltage
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4

modulation.

Injection of a selected m.s. onto the control voltage can 

minimize specific a.c.-side harmonic voltages without appreciably in­

creasing other harmonics. The m.s. selection is based on the phase 

sequence and order of the a.c.-side harmonic to be minimized.

As the d.c. current ripple is related to the a.c.-side harmonics, 

the m.s. adjusts itself in phase and amplitude to compensate any-steady- 

state changes in the a.c. system condition so that the selected a.c.- 

side harmonic is still attenuated.

Third harmonics are not amenable to suppression through m.s. 

because of the blocking properties of ungrounded transformer secondaries.

Nevertheless, it is possible to obtain a more balanced dis­

tribution of harmonic voltages in the three phases.

♦

*



CHAPTER 6

CONCLUSIONS

6.1 Conclusions

The constant current closed-loop control invariably used 

in the rectifying converter in h.v.d.c. links, leads to a number of 

topics examined in this thesis, namely:

1) System stability;

2) Selection and adjustment of an appropriate m-.s. for 

the purpose of uncharacteristic harmonic minimization;

3) m.s. locking mechanism related to the minimized a.c.- 

side harmonic.

The first topic was dealt with in Chapter 2 where a non-linear 

technique for stability analysis based on the describing function 

technique (d.f.) was used for the study of oscillations synchronized 

with the a.c. system voltage. The d.f. was defined for a particular 

frequency as the complex ratio of the output d.c.-side harmonic to 

the input control voltage harmonic. The condition for a limit cycle 

oscillation was obtained for a particular control gain and frequency 

from the intersection of the control linear locus, G(jw), with the 

non-linear locus, -1/N(x,w). As a consequence, modification of the 

d.f. locus according to a.c.-side and/or d.c.-side conditions, assume 

a particular importance as they affect stability margins. Studies 

of such conditions led to some interesting observations on converter d.f.
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4

+

It was established that d.f. for both, 6- or 12-pulse con­

verters under similar operating conditions exhibit only slight 

differences. It was established that the most important cause of 

variations on the d.f. locus are the d.c.-side and a.c.-side conditions 

of resonance and antiresonance. The d.c.-line input impedance has 

the most pronounced effects.
Continuity of the d.f. loci is limited by a maximum m.s. 

amplitude defined by K/k, where K is the ramp slope of the sawtooth 

voltage generator and k is the m.s. harmonic order.

Periodicity of the d.f. was established for balanced a.c.- 

systems. This fact allows appreciable reduction on the lengthy 

d.f. computation time which, in some cases, could be reduced to less 

than 10% of the original computing time.

Possibility of decomposition of the d.f. into three vectors 

was surmised from the d.f. studies and from theoretical studies 

of m.s. injection on the control voltage. Such a decomposition 

is based on the approximate independence of effects on the d.c.-line 

harmonic currents caused by :

1) Harmonics on the a.c. system

2) m.s. imposed on the control voltage.

Another less important cause of d.f. locus distortion is 

transformer saturation. The d.c. current through the secondary 

winding of the converter transformer alters the d.f. locus especially 

when the m.s. is 50Hz. The alterations are proportional to the 

secondary winding d.c.-level. In general, transformer saturation 

has negligible effects on the d.f. loci for m.s. frequencies of order



235

higher than one when compared with other causes, e.g. the presence 

of a negative sequence 100Hz on the supply.

The second topic of control voltage modulation is related 

to selection and adjustment of the m.s. . With this in mind, the 

incremental analysis of uncharacteristic harmonics in d.c. con­

verters due to control voltage modulation was carried out. In 

this study, it was found that the magnitude and phase of a.c.-side 

and d.c.-side uncharacteristic harmonic voltages are, within limits, 

proportionally related to the m.s. amplitude and phase. On the a.c.- 

side, a 50Hz m.s. gives rise to second harmonic of positive sequence; 

a 100Hz m.s. causes triple.n harmonics only; and a 150Hz m.s. causes 

second harmonic of negative sequence. In particular, a phase shift 

on the a.c.-side second harmonic current corresponds to a half of 

the phase shift of the d.c.-side 50Hz harmonic, irrespective of 

whether this is caused by control voltage modulation or distortion 

on the a.c. busbar voltage. It was-also shown that imbalances on 

the fundamental, cause a second harmonic on the d.c.-side which is 

the result of the rectification of a fundamental imbalance.
On the d.c.-side, the lowest uncharacteristic harmonic 

caused by a m.s. corresponds to that of the m.s. frequency. The 

d.c.-side harmonics are nearly proportional to the amplitude of the 

harmonics present on the a.c.-side even under open loop control.

In a 12-pulse converter, a m.s. in the control voltage 

causes uncharacteristic harmonic currents through the secondary 

of the YA-transformer which are shifted by approximately 30° with 

respect to the uncharacteristic harmonics of the same frequency through 

secondary of the YY-transformer. The approximate total primary 

phase shift between YY- and YA-transformers is given by 90q,
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where "q" is related to the harmonic order.

Locking of the m.s. onto the a.c.-side harmonic to be mini­

mized can be made through the current closed loop control. The 

approximate linear relationships between m.s. and uncharacteristic 

harmonics have shown that the d.c. voltage ripple is mostly dependent 

on the control voltage ripple. Therefore, the approximate m.s. can 

be obtained from the control voltage ripple. The m.s. amplitude 

and phase has to be adjusted for optimal reduction of the selected 

harmonic.

All practical tests \:e*o carried out using an injection 

circuit capable of selecting, adjusting and injecting the locked 

m.s. into the control voltage. Time constant of the control was modifiable 

by bypassing the large time constant of the injection circuit through 

a transient detector. This device inhibits the m.s. injection 

during transients and restores the control time constant to its 

conventional value.

•#
6.2 Original Contributions

The author believes that the following contributions are

original :

*

1) Extension of a computer program to obtain the describing 

function of 12-pulse converters;

2) Describing function studies of 6- and 12 - pulse con­

verters with transformer saturation;
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3) Studies of the properties of converter d.f.’s with 

the view of reducing the time of computer program 

to evaluate the d.f.’s;

4) Analytical prediction of the firing pulse instants 

when the control voltage is subject to a

1 modulating signal;

5) Incremental analysis of the effects of a m.s. on'the 

a.c.-side and d.c.-side harmonics;

6) Approximate relationships between m.s. and un­

characteristic harmonics with regard to an a.c.- 

side harmonic minimization method based on control 

voltage modulation;

7) Implementation of circuitry to select, adjust and

* inject a m.s. into the control voltage so that the

m.s. is kept locked to the d.c.-side current. A 

transient detector modifies the control time constant 

during transients;

8) Test results of a harmonic minimization method using 

closed loop injection of a m.s. into the control 

voltage.

♦

6.3 Suggestions for further work

1) Optimized computer program to obtain the d.f. using 

an approximate vectorial representation;
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2) Stability analysis of an optimal injection circuit;

3) Digital injection circuit using the software flexibility 

of microcomputers. This flexibility should allow 

several combination of Aa modulations;

4) Use of m.s. frequencies of higher orders especially 

with 12-pulse converters;

5) Optimization of the harmonic injection circuit by* 

using non-sinusoidal m.s.fs, e.g. square waves;

6) Automatic selection of the m.s. frequency, amplitude 

and phase to be always suppressing the most predominant 

harmonics on the a.c.-side.

♦
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APPENDIX A

A.1 Definition of Short-Circuit Ratio (SCR)

Fig. A.l is the Thevenin's equivalent of an a.c source,

*

*

Fig. A.l - Thevenin's Equivalent

A
The short-circuit of this equivalent is given by

Isc Z (A.l)

For this current, the power supplied by the source is given by

?

4*
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(SCC)•

by:

The short-circuit power, P^, is known as short-circuit capacity

In the case of a 3-phase balanced source, the S.C.C. is given

SCC ■  3P0 = P30 ' (A. 3)

In h.V'd.c,, short-circuit ratio (SCR) is defined as :

SCR = SCC
Pdc

(A .4)

where P^c is the d.c. power.

Without losses C23

P , = Pdc ac (A.5)

where P is the 3-phase active power.
cLC

An a.c. system is strong if SCR > 3, otherwise, it is considered 

a weak system.

Eqns A.2 to A .5 can be combined to give :

2
3V

SCR = 0
ZP (A- • 6)
ac

In terms of line voltage (V^ = V^//3) eqn A.6 becomes:

.2V
SCR = - l

ZPac
(A.7)
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A.2 A.c. busbar harmonic voltage

From Fig. 2.12 (Chapter 2) ;

where

V = E - I Z n n sn sn

V =(I - I )Z-n sn n fn

replacing eqn A.8 in terms of I into eqn A.9 results

V = n
E - V n n - I

sn n 'fn

Isolating in eqn A.10 yields

V = Z n n T 1 ' 1Z nsn

Z =
z z_sn fn

n Z +Z _ sn fn

A .3 D.c. - side impedance

Fig. A,2 is a simplified representation of a'converter 

connected to the d.c.-line representation given in Fig. 2.14. 

overall input of the circuit is :

Z.l zi +
V V Z 3

*

(A. 8) 

(A.9)

(A.10)

(A.11)

model

The

(A. 12)
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Assuming that :

Zj = jwLj

^2 ja)C 

Z3 = + ju»L3

oqn A.12 becomes

R,-o)^R,CL + j ( -uj^Lt’C + 2(joL, - oĵ CL, L, + u)L_)7 _ j •> 1 1 1 13 3' , „Z = ------------5----------------------------  (A.13)
-co C(L +L_) + 1 + joiCR,1 3  j

*

= reactor+half d.c.-line series impedance 

Ẑ  = d.c.-line shunt impedance 

Ẑ  = inverter equiv. impedance

Fig. A.2 - d.c.-line impedance

*
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If R^C ~ 0 in eqn A.13, yields :

Z1
R. j(-o)3L2C + 2o)Lx - oj3CL1L3 + gjL ) 

1 -o)2C(L1 + L3)
(A.14)

*
A.2.1 Resonant frequency

From eqn A.14, the resonant frequency condition is given by :

3 2 3- ojL̂ C + 2o3L̂  - 03 CL1L3 + 03L3 = 0 (A. 15)

Eqn A.15 can be rearranged as below

* oj(-032L2C + 2L - o)2CL, L_ + LJ = 0 1 1 1 3 j (A.16)

Solutions of eqn A.16 are

03̂ = 0

. , <2L1 + L3>
“ 2,3 _ /  L,C(L +L ) ±(

*
Eqn A.17 can be used to establish the resonant frequency, that is:

030 2tt
11
LlcJ (A.18)
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A.2.2 Antisonant frequency

A

From eqn A.14 the antiresonant condition is established by :

(A.19)

Solution of eqn A.19 gives the antiresonant frequency :

1
“» = C(L1+L3) 27Tfoo (A.20)

If the reactance of the converter model at the receiving end is 

much smaller than d.c.-line impedance plus terminal reactors, then 

is negligible. In this case, eqns A.17 and A.20 can be given in terms of 

frequency, respectively, by :

fn =  —  (A.21)
0 ttv/l^cT

f o o = V 2#  (A-22)

V



APPENDIX B

This appendix gives the most tedious demonstrations which are 

referred in Chapter 3.

B,1 Approximation of equation 3.30

The amplitude of equation 3,30 is given by:

21dc
‘ck kir

J  (cos k0 - cos k0 J 2 + sin2 k0, ' . (B.l)

An approximation of equation B.l for small values of k, Aa^

and Ac^ is obtained by:

0d = 0

sin k0, s 0 a
cos 0, s 1 a

(B. 2) 

(B.3) 

(B. 4)

Replacing in equation B.l :

21
I S — —  / (cos k0 - 1) 
cK kir s

(B.5)

Term cos k0g may be approximated by the first two terms of the

cosine series :

(k0J
COS k0 ~ 1 - -r~s = 2 (B.6)

Replacing B.6 in B.5 and simplifying, results :



251

kl , 9
Xck S f  sCK 27T

(B.7)

By definition :

0 = rs
Aa1 + Aa2

which replaced in B.7 yields :

kl
‘ck 8tt

-c Cto1 + ia2)2 (B. 8)

The argument of eqn 3.32 is :

k0 = TAN c

r sin k0, cos k0  ̂
-i d s

1 - cos k0. cos k0 d s
(B. 9)

Replacing the approximations suggested by eqns B.2 to B.4, in 

B.9 results :

k0c = 0 . CB.10)

B.2 Approximation of equation 3.31

The amplitude of eqn 3.31 is given by

21dcI , = - sin k0ck kTT s (B•11)

For small values of k, Aa^ and Ao^, the sine function in equation 

B.ll can be approximated by its arc value to give
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'ck s - CB-12)

Replacing and simplifying :

xck = ¥  tial + • CB-13>

The argument of eqn 3.29 is :

k0d s 0 . (B,14)

B.3 Harmonic analysis of Phase Ma" C50H!z m.s.)

%

41

Following the same procedure used in subsection 3.62, but now 

based on Table 3.5, the harmonic current of order "k" through phase "a" 

is given by :

21dc
'ak kTT sin

kAa Aa-
— —  cos k(0 + 120 - —2~  ) +

s m
kAa_ Aa? ^
-y-=- cos kCQ - 60 + ~~2 ~) (B. 15)

Letting 9^ = 9 + 120 and using the identity

cos(A±B) = cos a cos B + sin A sin B

eqn B.15 becomes :
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21dc
ak kTT

kAa.
sxn

kAa. Aa.
cos k0^ cos 2 + sin s^n ^ +

kAa,
s m

Aa, Aa,
cos k9^ cos k(. — y ~ - 180) - sin k0^ sin k(—~

(B.16)

Grouping together the terms containing sin k0^ and cos k0^ results

21dc
' ak kir

r 2kAa^ kAa Aa
sin k0^ [Sln 2 - sin 2 sin k( ^  18°)

4

cos k0
kAa^ kAa 

sin — —  cos —-—
Aa Aa >>

+ sin k — cos k(------180) |
1 2 j

(B. 17)

Eqn B.17 can be further simplified if odd and even harmonics 

are considered separately.

a) Odd harmonics

For odd k's, equation B.17 becomes:

21dc
' ak kTT

/ ikAaJ
sin k0^ 2sin 1

2 J
. 2 + s m

fkAa2'

cos k0
kAa^ kAa^ kAa 2 Ââ 'i

sin — —  cos,— —  - sin — —  cos — —

... (B.18)

Equation B.18 can be written

21dc
' ak kTT

A sin k0. cos k0 + A cos k0. sin k 0 
l a  1 a j

180)

1

(B.19)



where:

kAa1 kAâ  kAa2 kAâ
A sin k0 = sin — —  cos —x----sin — —  as — —a 2  ̂ 2 2

2A cos k0 = sin a
kAa.

+ s m
kAa,

From equation B.19 k0 is given by:cL

k0 = TAN a
-1 A sin k0

A cos k0v 3T

(B .2 0 )

or

k0 = TAN-1
kAa-. kAa. kAa, kAa,

sin cos - sin cos

sin
'kAa >

+l 2 J
s m

2 rkAa2>|
1 )

CB.21)

Using the trigonometric identities

sin 2A = 2 sin A cos A

sin A - sin B = 2 cos %(A+B)sin %(A-B) 
2sin A = h -  h cos 2A 

eqn A.21 becomes

k0 = TAN a
-1 sin k0^cos, k0s

1 - cos k0, cos k0 , d s

'AM in eqn B.19 can be determined from :

(B.22)
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A2 =
kA.ô  kAa kAa2 kAa2 ^2

sin — —  cos — ----sin — —  cos —-—

s m
2 'kAa^ rkAa„ ^

+ sm' (B.23)

which after some trigonometric manipulations, becomes

/ 2  2̂
A = /(cos k0g - cos k0^) + sin k0^ (B.24)

Hence, replacing back 0^ = 0 + 120, the implicit form of equation

B.19 becomes :

dc = rak sin k(0 + 0a + 120) (B.25)

where k0 is defined by eqn B.22 and I is obtained by replacing
3. cLK

eqn B.24 into equation B.19. The amplitude of equation B.25 is then

21
I = — —  / (cos k0 - cos k0 ,)̂  + sin ^k0 ,ak 7̂7 s d d (B.26)

b) Even harmonics

For even k's, equation B.17 becomes

21dc
'ak kir sin k0  ̂sin

kAa.
. 2 ,

e, .
- s m

kAa

cos k0.
sin kAa^ + sin kAa2

(B.27)

Equation B.27 can be put into a more compact form. Let
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A sin k0 = sin a
2 kAa. 2 kAa_1 - sin 2

2 j [ 2 j (B.28)

A cos k0 = a
sin kAa^ + sin kAa2

(B. 29)

The argument k0 , can be obtained from the combination of equations
3.

B.28 and B.29

to:

k0 = TAN a
-1

2 (s in
fk Aa^ 'kAa2> rkAa„^1 - sin ) (sin 1
2 J 2 .  J 2 J

'kAa^

sin kAa^ + sin kAa^

(B.30)

After some trigonometric manipulations, eqn B.30 is simplified

k0 = TAN a
-1 sin k0

cos k0
(B.31)

From equation B.31

0 = 0  a d (B.32)

The magnitude of A is also obtained from equations B.28 and B.29 

by adding the square of these two equations and simplifying, that is :

A = sin
2 ̂ kAa^

- s m
kAa,

kAa^ kAa^ kAa
sin ———  cos ---- + cos • 2 . kA<Vs m  —r— (B. 33)



Taking into account that ;

and

2sin A = % - h cos 2A

sin 2A = 2 sin A cos

equation B.33 can be simplified

cos kAa^ - cos kAa2 L sin kAa^ + sin kAa2'
2 J ' 2 J

(B.34)

Through trigonometric and algebraic manipulations eqn B.34 

is reduced to

A = sin k0 (B.35)

Eqns B.31 and B.35 can be used to obtain a more compact form 

of equation B.27

where
'ak

'ak

I , cos k(0 - 0 + 120)aK a

2 1 .
— — — sin k0 kir s

(B.36)

(B.37)

0, = 0 , =a d
Ao^ - Aa2

(B.38)

B.4 Approximation of equation 3.120

The cosine difference in eqn 3.120 may be simplified as follows
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cos 120 - cos(120 + 0s) = cos 120(1 - cos 0g) + sin 120 sin0s

___ (B.39)

Equation B.39 has a 0g dependent factor which may be put as :

*

where

A sin 0 = 1 -  cos 0s 

A cos 0 = sin 0g

0 = TAN-1
1 - cos 0

sin 0
s J

(B.40) 

(B .41)

(B.42)

A / ------------2------ 2(.1 - cos 0 ) + sin 0s s (B.43)

*
Using the trigonomentric identity 

1 - cos X = 2 sin^2X

eqns B.42 and B.43 can be simplified to

0 = TAN-1
2 sin"

sin 0

A = 2 sin —

(B.44)

(B.45)

For small arcs the sine and the tangent functions can be approxi­

mated by their arcs and equations B.44 and B.45 are approximated by :
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A = 0S

Replacing eqns

cos 120 - cos

(B.46)

(B.47)

B.46 and B.47 in equation B.39 gives 

(120 + 0 )  ~  0s sin(120 + ) (B.48)

*



APPENDIX C

In this appendix, the FORTRAN and ASSEMBLY programs used to 

interface the converter busbar with the ICCC-CDC computer system, 

are listed. The programs are selfexplanatory.

Phase correction due to delay time reading between two any 

channel of the A/D converter is PHREAD = 0.01872335882439 rd.
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PROGRAM ACHARH(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)
C: FOURIER ANALYSIS OF A.C. S D.C.-SIDE HARMONIC VOLTAGES OF CONVERTER 

DIMENSION Y(1500),CH(32),ANUM(16)
DIMENSION AO(500)»A1(500).A2(500)
COMPLEX SEQ1,SEQ2,A0,A1,A2
NPTS=82
NH=15
NCHANN=4
PI=4.*ATAN(i.)
DIFF--1•000000000 
DC0FF=204175.0032 
DCVQLT=70.4 
DQ10QN=1,NH 
A0(N)=CMPLX(0.,0.)
A1(N)=CMPLX<0.,0.)

* A2(N)=CMPLX(0.,0.)
k  100 CONTINUE

CALL HEXDEC(Y,NPTS,NCHANN)

C FOURIER ANALYSIS OF PHASES * A V B *  AND *C*

SEQ1=CMPLX(1.,0.)
SEG2=CMFLX(1.,0.)
URITE(6,*)7 PHASE A'
NB=1
NE=NF'TS
CALL F0URIER(NB,NE,Y,NPTS,NH,YSCALE,PHREF,DIFF,DC0FF,SEQ1,3EQ2, 
fA0,Al,A2,PI)
C=C0S(2.*PI/3.)
S=SIN(2.*PI/3.)
SEQ1=CMPLX(C»S)
SEQ2=CHPLX(Cf-S)
URITE(6*0 7 PHASE B7
NB=NPTSt 1
NE=2*NPTS
CALL FOURIER(NBfNE»YfNPTSfNH,YSCALE,PHREFfDIFF»DC0FF,SEQ1»SEQ2» 
+A0.A1 r A2»F'I)
URITE(6,*>7 PHASE C7
NB=2*NPTS+1
NE=3*NPTS
CALL FOURIER(NB,NErY,NPTS,NH»YSCALE»PHREF»DIFF,DC0FF,SEQ2rSEQ1» 
+A0»A1,A2»PI)

%  URITE(6,*)7-7
URITE(6,*)7 SYMMETRICAL COMPONENTS7
URITE<6,*)7-7
URITE(6,*)7 HARM. SEQ. POS. SEQ. NEG.
+ SEQ. ZERO7
URITE(6,*)7 ORDER AMPLITUDE ANGLE AMPLITUDE ANGLE
+ AMPLITUDE ANGLE7
URITE(6,*)7----- +-------------------------------------------------I-------------- 7

C DATA FOR THE SYMMETRICAL COMPONENTS ANALYSIS

D0200N=1,15 
AMODO=CABS(AO(N))/3.
AM0D1=CABS(A1(N))/3.
AM0D2=CABS(A2(N))/3.
AAO=AIMAG(AO(N))
AA1=AIMAG(A1(N))
AA2=AIMAG(A2(N))
IF(AAO.EQ.O.)G0 TO 200 
IF(AA1.EQ.O.)GO TO 200 
IF(AA2.EQ.O.)G0 TO 200
ARG0=ATAN2(AIHAG(A0(N)),REAL(AQ(N)))*180./FT 
ARG1=ATAN2(AIMAG(A1(N))»REAL(A1(N))X I 80,/PI 
ARG2=ATAN2(AIMAG(A2(N)),REAL(A2(N)))*180./PI 
URITE(6,150)N,AM0D1,ARG1,AM0D2,ARG2,AM0D0,ARG0 

150 FORMAT(1H ,I2,3X,3(F10,4,2X,F10.4,2X))
200 CONTINUE

URITE(6,*)7.7 
WRITE(6» * ) 7 . '
URITE(6»*)7.7

C FOURIER ANALYSIS OF THE DC VOLTAGE

URITE(6»*)7 D.C.-SIDE HARMONIC VOLTAGES7
NB=3*NPTS+1
NE=4*NPTS
CALL F0URIER(NB,NE,Y,NPTS,NH,YSCALE,PHREF,DIFF,DCV0LT,SEG1,SEQ2, 
+A0,A1,A2,PI)
STOP
END

*



SUBROUTINE HEXDEC(Y»NPTS>NCHANN)

READ AND INTERPRET HEXADECIMAL DATA FROM THE TEXAS 990 

DIMENSION CH(32),ANUM(16),Y(15oO)

READ HEXADECIMAL DATA

DATA A N U M / lH 0 , lH l, lH 2 , lH 3 , lH 4 f lH 5 , lH 6 , iH 7 , lH 8 , lH 9 ,
+ 1HA,1HB,1HC,1HD,1HE,1HF/

JJ=i
LINES=l+NCHANN*NPTS/8 
D0500K=1,LINES 
READ(5,10) CH

10 F0RMAT(5X,4(4A1,2X),4(2X,4A1))
D0400N=1,8
VAL=0.
NE=4#N 
NS=NE-3 
D030J=NS,NE 
DO 2 1=1,16
IF  (C H (J ).EQ .AN U M (I))  GOTO 3

2 CONTINUE

TRANSFORM HEXADECIMAL INTO DECIMAL VALUES

3 VAL=VAL*16+I-1  
30 CONTINUE

Y ( JJ)=VAL 
UR ITE(6,*)VAL  
JJ=JJ+1 

400 CONTINUE 
500 CONTINUE 

RETURN 
END
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t

%

SUBROUTINE FOURIER( NB, N E ,Y , NPTS,NH,YSCALE, F'HREF,D IF F , DCOFF, SEQ1, 
+SEQ2,A0,A1,A2,PI>

DIMENSION AO(5 0 0 ) ,A1(500)»62(500)
DIMENSION Y(1500),A (500),B (500>
COMPLEX AA»AOfA l;A2fSEQlfSEQ2

D010N=1,NH
A(N)=0*

10 B(N)=0»
PHREAD=1♦ 872335882439E-2 
P IX 2 =P I*2 .
DELTA=PIX2/NPTS 
D030I=NB»NE 
TETA=TETA+DELTA 
AO=AO+Y(I)
D020N=1tNH
A (N )= A (N H Y ( I) *C O S (N *T E T A )

20 B (N )= B (N )+ Y ( I) *S IN (N *T E T A )
30 CONTINUE 

URITE(6,40)
40 FORMATdH , / / ,9 X , 'F O U R IE R  COMPONENTS',//,7X, 'AMPLITUDE',7X,  

F 'P H A S E ', / / )
IF(NE*NE»NF’TS)GG TO 80
Y S C A L E = ( P I * 1 0 0 « ) / ( S G R T (A ( l ) * A d ) + B ( l ) * B ( l ) ) * D E L T A )  
PHREF=ATAN2(A(1),B(1 ))
GO TO 81

80 IF (NE.NE.4*NPTS)G0  TO 81 
AQ=A0*DELTA/PIX2 
YSCALE=DCOFF/AO 
AO=AO*YSCALE
GO TO 82

81 A0= (<A0-DC0FF)#DELTA*YSCALE)/(PIX2)
82 D IFF=D IFF+1 .000000000 

D060N=1,NH
AN=A(N)
A (N )=SQ RT(A (N )*A (N )+B (N )*B (N ))*D ELTA/P I  
I F ( A ( N ) ♦ LT ♦ 1«E-6)G0 TO 60 
B(N>=ATAN2<AN,B(N))-N*<PHREF+DIFF*PHREAD>
A(N)=A(N)*YSCALE  

110 I F ( B (N) .GE.O*)G0 TO 100 
B(N )=B (N )+P IX2  
GO TO 110

100 IF (B (N )*L E *P IX 2 )G 0  TO 90 
B (N )= B (N ) -P IX 2  
GO TO 100 

90 BN =B(N )*180 ./P I  
WRITE(6 ,5 0 )N y A ( N) *BN 

50 FORMATdH , I3 ,2X ,F10 .4 ,4X ,F10 .2>
IF (NE.E0.4*NPTS)G0  TO 60 
AREAL=A(N)#COS(B(N>)
A IMGN=A(N)*S IN(B (N)>
AA=CMPLX(AREALfAIMGN)
A0(N)=A0(N)fAA  
A1(N)=A1(N)+SEQ1*AA  
A2(N)=A2(N)+SE02*AA  

60 CONTINUE 
URITE(6,70)A0

70 FORMAT(1H , / / f3X , 'D C  COMPONENT = S F 9 . 4 , / / / / )
RETURN
END



ASSEMBLY PROGRAM TO INTERFACE CDC TO TEXAS

►

*

F404 02EU LWPI >4D0
F4U2 04DU
F406 1002 JMP >40C
F406 0420 BLWP a>E00O
F40A E000
F4UC 04C4 CLR R4
F4UE C804 MOV R4,a>AFF4
F410 AFF4
F412 C804 MOV R4,a>AFF8
F414 AFF8
F416 0720 SETO a>AFFA
F418 AFFA
F41A 0560 INV a >AFFC
F41C AFFC
F41E 11FD JIT >41A
F 420 ClbO MOV a>AFFA,R5
F422 AFFE
F424 0285 Cl R5,>7B0
F42b 07B0
F428 1301 JEQ >42C
F42A 10F1 JMP >40E
F42C C804 MOV R4,a>AFF4
F42E AFF4
F430 C804 MOV R4,a>AFF8
F43z AFF8
F434 U720 SETO a>AFFA
F436 AFFA
F438 U560 IMV a>AFFC
F43A AFFC
F43C 11FD JLT >438
F43E ClbO MOV a>AFFE,R5
F44U AFFE
F442 0285 Cl R5,>7B0
F444 07B0
F446 1501 JGT >44A
F448 10F1 JMP >42C
F44A 02E0 LWPI >4D0
F44C 04D0
F44E 1002 JMP >454
F450 0420 BLWPI a>E000
F452 E000
F454 0201 LI R1,>1
F436 0001
F458 0202 LI R2,>2
F43A 0002
F43C F203 LI R3 , ; 3
F45E 0003
F460 0204 LI R4,>0
F462 OOOU
F4o4 0205 LI R5,>500

starting
procedure

read R5

compare with 
average value

read R5

A/D
(channels 0,1,2 & 3)

V / (PTO)



(Continued)

F466 0500
F4b8 020b LI ,Rb, >5A2
F4bA U5A2 first addresses
F4bC 0207 LI,R7,>644 of phases a,b & c
F4bE 0644 and of DC-voltage
F470 0208 LI R8,>6E6
F472 ObEb
F474 C804 MOV R4,a>AFF4 set up A/D
F476 AFF4
F478 C804 MOV R4,a>AFF8 select channel 0
F47A AFF8
F47C 0720 SETO a>AFFA trigger channel 0
F47E AFFA (start conv.)
F480 0560 IWV a>AFFC check if conv.
F482 AFFC is ready
F484 11FD JLT >480
F486 CD 60 MOV a>AFFE,*R5+ read and
F488 AFFE increment R5
F48A C801 MOV Rl,a>AFF8
F48C AFF8
F48E 0720 SETO a>AFFA
F490 AFFA idem channel 1
F492 0560 IWV a>AFFC
F494 AFFC
F496 11FD JLT >492
F496 CD AO MOV a>AFFE,*R6+
F49A AFFE
F49C C802 MOV RZ,a>AFF8
F49E AFF8
F4AU 0720 SETO a>AFFA
F4A2 AFFA idem channel 1
F4A4 0560 IMV a>AFFC
F4Ab AFFC
F4A8 11FD JIT >4A4
F4AA CDEO MOV a>AFFE,*R7+
F4AC AFFE
F4AE C803 MOV R3,a>AFF8
F4B0 AFF8
F4B2 0720 SETO a>AFFA
F4B4 AFFA idem channel 1
F4B6 0560 INV a>AFFC
F4B8 AFFC
F4BA 11FD JLT >4B6
F4BC CE20 MOV a>AFFE,*R8+
F4BE AFFE
F4C0 0288 CI R8,>788 last address ?
F4C2 0790
F4C4 11D9 JLT >478
F4Cb 0460 B a>450 link back
F4C8 0450 to monitor


