170 research outputs found
Comparison of urinary scents of two related mouse species, Mus spicilegus and Mus domesticus.
International audienceWhereas the house mouse (Mus domesticus) has been studied extensively in terms of physiology/behavior and pheromonal attributes, the evolutionarily related mound-building mouse (Mus spicilegus) has received attention only recently due to its divergent behavioral traits related to olfaction. To date, no chemical studies on urinary volatile compounds have been performed on M. spicilegus. The rationale for our investigations was to determine if there are differences in urinary volatiles of intact and castrated M. spicilegus males and to explore further whether this species could utilize the same or structurally similar pheromones as the male house mouse, M. domesticus. The use of capillary gas chromatography/mass spectrometry (GC-MS) together with sorptive stir bar extraction sampling enabled quantitative comparisons between the intact and castrated M. spicilegus urinary profiles. Additionally, through GC-MS and atomic emission (sulfur-selective) detection, we identified qualitative molecular differences between intact M. spicilegus and M. domesticus. A series of volatile and odoriferous lactones and the presence of coumarin were the unique features of M. spicilegus, as was the notable absence of 2-sec-butyl-4,5-dihydrothiazole (a prominent M. domesticus male pheromone) and other sulfur-containing compounds. Castration of M. spicilegus males eliminated several substances, including delta-hexalactone and gamma-octalactone, and substantially decreased additional compounds, suggesting their possible role in chemical communication. Some other M. domesticus pheromone components were also found in M. spicilegus urine. These comparative chemical analyses support the notion of metabolic similarities as well as the uniqueness of some volatiles for M. spicilegus, which may have a distinct physiological function in reproduction and behavior
Disease-specific, neurosphere-derived cells as models for brain disorders
There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery
Fibroblast and Lymphoblast Gene Expression Profiles in Schizophrenia: Are Non-Neural Cells Informative?
Lymphoblastoid cell lines (LCLs) and fibroblasts provide conveniently derived non-neuronal samples in which to investigate the aetiology of schizophrenia (SZ) using gene expression profiling. This assumes that heritable mechanisms associated with risk of SZ have systemic effects and result in changes to gene expression in all tissues. The broad aim of this and other similar studies is that comparison of the transcriptomes of non-neuronal tissues from SZ patients and healthy controls may identify gene/pathway dysregulation underpinning the neurobiological defects associated with SZ. Using microarrays consisting of 18,664 probes we compared gene expression profiles of LCLs from SZ cases and healthy controls. To identify robust associations with SZ that were not patient or tissue specific, we also examined fibroblasts from an independent series of SZ cases and controls using the same microarrays. In both tissue types ANOVA analysis returned approximately the number of differentially expressed genes expected by chance. No genes were significantly differentially expressed in either tissue when corrected for multiple testing. Even using relaxed parameters (p≤0.05, without multiple testing correction) there were still no differentially expressed genes that also displayed ≥2-fold change between the groups of SZ cases and controls common to both LCLs and fibroblasts. We conclude that despite encouraging data from previous microarray studies assessing non-neural tissues, the lack of a convergent set of differentially expressed genes associated with SZ using fibroblasts and LCLs indicates the utility of non-neuronal tissues for detection of gene expression differences and/or pathways associated with SZ remains to be demonstrated
\u27Vitamin D and cognition in older adults\u27: updated international recommendations.
BACKGROUND: Hypovitaminosis D, a condition that is highly prevalent in older adults aged 65 years and above, is associated with brain changes and dementia. Given the rapidly accumulating and complex contribution of the literature in the field of vitamin D and cognition, clear guidance is needed for researchers and clinicians.
METHODS: International experts met at an invitational summit on \u27Vitamin D and Cognition in Older Adults\u27. Based on previous reports and expert opinion, the task force focused on key questions relating to the role of vitamin D in Alzheimer\u27s disease and related disorders. Each question was discussed and voted using a Delphi-like approach.
RESULTS: The experts reached an agreement that hypovitaminosis D increases the risk of cognitive decline and dementia in older adults and may alter the clinical presentation as a consequence of related comorbidities; however, at present, vitamin D level should not be used as a diagnostic or prognostic biomarker of Alzheimer\u27s disease due to lack of specificity and insufficient evidence. This population should be screened for hypovitaminosis D because of its high prevalence and should receive supplementation, if necessary; but this advice was not specific to cognition. During the debate, the possibility of \u27critical periods\u27 during which vitamin D may have its greatest impact on the brain was addressed; whether hypovitaminosis D influences cognition actively through deleterious effects and/or passively by loss of neuroprotection was also considered.
CONCLUSIONS: The international task force agreed on five overarching principles related to vitamin D and cognition in older adults. Several areas of uncertainty remain, and it will be necessary to revise the proposed recommendations as new findings become available
Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503
Measuring the relative mass contributions of luminous and dark matter in
spiral galaxies is important for understanding their formation and evolution.
The combination of a galaxy rotation curve and strong lensing is a powerful way
to break the disk-halo degeneracy that is inherent in each of the methods
individually. We present an analysis of the 10-image radio spiral lens
B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new
adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for
the lens galaxy rotation curve and the source redshift. We construct a
three-dimensionally axisymmetric mass distribution with 3 components: an
exponential profile for the disk, a point mass for the bulge, and an NFW
profile for the halo. The mass model is simultaneously fitted to the kinematics
and the lensing data. The NFW halo needs to be oblate with a flattening of
a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests
that baryons are effective at making the halos oblate near the center. The
lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we
obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark
matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is
f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total
circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting
that the disk is marginally submaximal. The stellar mass of the disk from our
modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the
cold gas contributes ~20% to the total disk mass. In comparison to the stellar
masses estimated from stellar population synthesis models, the stellar initial
mass function of Chabrier is preferred to that of Salpeter by a probability
factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments,
accepted for publication in Ap
The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies
The relative contribution of baryons and dark matter to the inner regions of
spiral galaxies provides critical clues to their formation and evolution, but
it is generally difficult to determine. For spiral galaxies that are strong
gravitational lenses, however, the combination of lensing and kinematic
observations can be used to break the disk-halo degeneracy. In turn, such data
constrain fundamental parameters such as i) the mass density profile slope and
axis ratio of the dark matter halo, and by comparison with dark matter-only
numerical simulations the modifications imposed by baryons; ii) the mass in
stars and therefore the overall star formation efficiency, and the amount of
feedback; iii) by comparison with stellar population synthesis models, the
normalization of the stellar initial mass function. In this first paper of a
series, we present a sample of 16 secure, 1 probable, and 6 possible strong
lensing spiral galaxies, for which multi-band high-resolution images and
rotation curves were obtained using the Hubble Space Telescope and Keck-II
Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The
sample includes 8 newly discovered secure systems. [abridged] We find that the
SWELLS sample of secure lenses spans a broad range of morphologies (from
lenticular to late-type spiral), spectral types (quantified by Halpha
emission), and bulge to total stellar mass ratio (0.22-0.85), while being
limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for
exploring the relationship between dark and luminous matter in a broad range of
galaxies. We find that the deflector galaxies obey the same size-mass relation
as that of a comparison sample of elongated non-lens galaxies selected from the
SDSS survey. We conclude that the SWELLS sample is consistent with being
representative of the overall population of high-mass high-inclination disky
galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres
Ergodicity and Central Limit Theorem in Systems with Long-Range Interactions
In this letter we discuss the validity of the ergodicity hypothesis in
theories of violent relaxation in long-range interacting systems. We base our
reasoning on the Hamiltonian Mean Field model and show that the life-time of
quasi-stationary states resulting from the violent relaxation does not allow
the system to reach a complete mixed state. We also discuss the applicability
of a generalization of the central limit theorem. In this context, we show that
no attractor exists in distribution space for the sum of velocities of a
particle other than the Gaussian distribution. The long-range nature of the
interaction leads in fact to a new instance of sluggish convergence to a
Gaussian distribution.Comment: 13 pages,6 figure
The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release
We present the second report of our systematic search for strongly lensed
quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive
follow-up observations of 136 candidate objects, we find 36 lenses in the full
sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release
5. We then define a complete sample of 19 lenses, including 11 from our
previous search in the SDSS Data Release 3, from the sample of 36,287 quasars
with i<19.1 in the redshift range 0.6<z<2.2, where we require the lenses to
have image separations of 1"<\theta<20" and i-band magnitude differences
between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3
have quadruple-image configurations, while the remaining 16 show double images.
This lens sample constrains the cosmological constant to be
\Omega_\Lambda=0.84^{+0.06}_{-0.08}(stat.)^{+0.09}_{-0.07}(syst.) assuming a
flat universe, which is in good agreement with other cosmological observations.
We also report the discoveries of 7 binary quasars with separations ranging
from 1.1" to 16.6", which are identified in the course of our lens survey. This
study concludes the construction of our statistical lens sample in the full
SDSS-I data set.Comment: 37 pages, 2 figures and 5 tables, accepted to A
The Sloan Digital Sky Survey Quasar Lens Search. V. Final Catalog from the Seventh Data Release
We present the final statistical sample of lensed quasars from the Sloan
Digital Sky Survey (SDSS) Quasar Lens Search (SQLS). The well-defined
statistical lens sample consists of 26 lensed quasars brighter than i=19.1 and
in the redshift range of 0.6<z<2.2 selected from 50,836 spectroscopically
confirmed quasars in the SDSS Data Release 7 (DR7), where we restrict the image
separation range to 1"<\theta<20" and the i-band magnitude differences in two
image lenses to be smaller than 1.25 mag. The SDSS DR7 quasar catalog also
contains 36 additional lenses identified with various techniques. In addition
to these lensed quasars, we have identified 81 pairs of quasars from follow-up
spectroscopy, 26 of which are physically associated binary quasars. The
statistical lens sample covers a wide range of image separations, redshifts,
and magnitudes, and therefore is suitable for systematic studies of
cosmological parameters and surveys of the structure and evolution of galaxies
and quasars.Comment: 42 pages, 2 figures, 6 tables, accepted for publication in AJ; see
http://www-utap.phys.s.u-tokyo.ac.jp/~sdss/sqls/ for supplemental informatio
- …