42 research outputs found

    Preliminary signs of the initiation of deep convection by GNSS

    Get PDF
    This study reports on the exploitation of GNSS (Global Navigation Satellite System) and a new potential application for weather forecasts and nowcasting. We focus on GPS observations (post-processing with a time resolution of 5 and 15 min and fast calculations with a time resolution of 5 min) and try to establish typical configurations of the water vapour field which characterise convective systems and particularly which supply precursors of their initiation are associated with deep convection. We show the critical role of GNSS horizontal gradients of the water vapour content to detect small scale structures of the troposphere (i. e. convective cells), and then we present our strategy to obtain typical water vapour configurations by GNSS called "H2O alert". These alerts are based on a dry/wet contrast taking place during a 30 min time window before the initiation of a convective system. GNSS observations have been assessed for the rainfall event of 28-29 June 2005 using data from the Belgian dense network (baseline from 5 to 30 km). To validate our GNSS H2O alerts, we use the detection of precipitation by C-band weather radar and thermal infrared radiance (cloud top temperature) of the 10.8-micrometers channel [Ch09] of SEVIRI instrument on Meteosat Second Generation. Using post-processed measurements, our H2O alerts obtain a score of about 80 %. Final and ultra-rapid IGS (International GNSS Service) orbits have been tested and show equivalent results. Fast calculations (less than 10 min) have been processed for 29 June 2005 with a time resolution of 5 min. The mean bias (and standard deviation) between fast and reference post-processed ZTD (zenith total delay) and gradients are, respectively, 0.002 (+/- 0.008) m and 0.001 (+/- 0.004) m. The score obtained for the H2O alerts generated by fast calculations is 65 %

    Forecast, observation and modelling of a deep stratospheric intrusion event over Europe

    Get PDF
    A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU-project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity) with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT) event, encountered during the STACCATO period on 20-21 June 2001, could be followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one reaching almost a height of 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent measurements of the cosmogenic radionuclides <sup>10</sup>Be and <sup>7</sup>Be and their ratio <sup>10</sup>Be/<sup>7</sup>Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures with many details the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October 1999) from the ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric model is shown to be in very good agreement with the observations during this case study, which provides the first successful validation of a chemical tracer that is used operationally in a weather forecast model. This suggests that coupling chemistry and weather forecast models may significantly improve both weather and chemical forecasts in the future

    An optimisation method to improve modelling of wet deposition in atmospheric transport models: applied to FLEXPART v10.4

    Get PDF
    Wet deposition plays a crucial role in the removal of aerosols from the atmosphere. Yet, large uncertainties remain in its implementation in atmospheric transport models, specifically in the parameterisation schemes that are often used. Recently, a new wet deposition scheme was introduced in FLEXPART. The input parameters for its wet deposition scheme can be altered by the user and may be case-specific. In this paper, a new method is presented to optimise the wet scavenging rates in atmospheric transport models such as FLEXPART. The optimisation scheme is tested in a case study of aerosol-attached 137Cs following the Fukushima Daiichi nuclear power plant accident. From this, improved values for the wet scavenging input parameters in FLEXPART are suggested.</p

    Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends

    Get PDF
    This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-15-9965-2015Abstract. Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere (as measured by equivalent effective stratospheric chlorine – EESC) was maximised in the second half of the 1990s. We examine the periods before and after the peak to see if any change in trend is discernible in the ozone record that might be attributable to a change in the EESC trend, though no attribution is attempted. Prior to 1998, trends in the upper stratosphere (~ 45 km, 4 hPa) are found to be −5 to −10 % per decade at mid-latitudes and closer to −5 % per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However, it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the main satellite and ground-based records have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ~ 2 % per decade in mid-latitudes and ~ 3 % per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different data sets. The averaged upward trends are significant if the trends derived from various data sets are assumed to be independent (as in Pawson et al., 2014) but are generally not significant if the trends are not independent. This occurs because many of the underlying measurement records are used in more than one merged data set. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the overall ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties. The support of SPARC, IO3C, IGACO-O3 and NDACC was essential to the success of the initiative. Neil Harris thanks the UK Natural Environment Research Council for an Advanced Research Fellowship. Work at the Jet Propulsion Laboratory was performed under contract with the National Aeronautics and Space Administration. Measurements at Lauder are core funded through New Zealand’s Ministry of Business, Innovation and Employment, while those at Woolongong are supported by the Australian Research Council

    Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) – Part 2: Ground-based validation of nadir ozone profile data products

    Get PDF
    Atmospheric ozone plays a key role in air quality and the radiation budget of the Earth, both directly and through its chemical influence on other trace gases. Assessments of the atmospheric ozone distribution and associated climate change therefore demand accurate vertically resolved ozone observations with both stratospheric and tropospheric sensitivity, on both global and regional scales, and both in the long term and at shorter timescales. Such observations have been acquired by two series of European nadir-viewing ozone profilers, namely the scattered-light UV–visible spectrometers of the GOME family, launched regularly since 1995 (GOME, SCIAMACHY, OMI, GOME-2A/B, TROPOMI, and the upcoming Sentinel-5 series), and the thermal infrared emission sounders of the IASI type, launched regularly since 2006 (IASI on Metop platforms and the upcoming IASI-NG on Metop-SG). In particular, several Level-2 retrieved, Level-3 monthly gridded, and Level-4 assimilated nadir ozone profile data products have been improved and harmonized in the context of the ozone project of the European Space Agency's Climate Change Initiative (ESA Ozone_cci). To verify their fitness for purpose, these ozone datasets must undergo a comprehensive quality assessment (QA), including (a) detailed identification of their geographical, vertical, and temporal domains of validity; (b) quantification of their potential bias, noise, and drift and their dependences on major influence quantities; and (c) assessment of the mutual consistency of data from different sounders. For this purpose we have applied to the Ozone_cci Climate Research Data Package (CRDP) released in 2017 the versatile QA and validation system Multi-TASTE, which has been developed in the context of several heritage projects (ESA's Multi-TASTE, EUMETSAT's O3M-SAF, and the European Commission's FP6 GEOmon and FP7 QA4ECV). This work, as the second in a series of four Ozone_cci validation papers, reports for the first time on data content studies, information content studies and ground-based validation for both the GOME- and IASI-type climate data records combined. The ground-based reference measurements have been provided by the Network for the Detection of Atmospheric Composition Change (NDACC), NASA's Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other ozonesonde and lidar stations contributing to the World Meteorological Organisation's Global Atmosphere Watch (WMO GAW). The nadir ozone profile CRDP quality assessment reveals that all nadir ozone profile products under study fulfil the GCOS user requirements in terms of observation frequency and horizontal and vertical resolution. Yet all L2 observations also show sensitivity outliers in the UTLS and are strongly correlated vertically due to substantial averaging kernel fluctuations that extend far beyond the kernel's 15 km FWHM. The CRDP typically does not comply with the GCOS user requirements in terms of total uncertainty and decadal drift, except for the UV–visible L4 dataset. The drift values of the L2 GOME and OMI, the L3 IASI, and the L4 assimilated products are found to be overall insignificant, however, and applying appropriate altitude-dependent bias and drift corrections make the data fit for climate and atmospheric composition monitoring and modelling purposes. Dependence of the Ozone_cci data quality on major influence quantities – resulting in data screening suggestions to users – and perspectives for the Copernicus Sentinel missions are additionally discussed

    Aerosol Optical Depth measurements at 340 nm with a Brewer spectrophotometer and comparison with Cimel sunphotometer observations at Uccle, Belgium

    No full text
    The Langley Plot Method (LPM) is adapted for the retrieval of Aerosol Optical Depth (AOD) values at 340 nm from Brewer#178 sun scan measurements between 335 and 345 nm (convoluted with the band pass function of the Cimel sunphotometer filter at 340 nm) performed in Uccle, Belgium. The use of sun scans instead of direct sun measurements simplifies the comparison of the AOD values with quasi-simultaneous Cimel sunphotometer values. Also, the irradiance at 340 nm is larger than the one at 320.1 nm due to lower ozone absorption, thus improving the signal to noise ratio. For the selection of the cloudless days (from now on referred to as calibration quality clear days), a new set of criteria is proposed. With the adapted method, individual clear sky AOD values, for which the selection criteria are also presented in this article, are calculated for a period from September 2006 until the end of August 2010. These values are then compared to quasi-simultaneous Cimel sunphotometer measurements, showing a very good agreement (the correlation coefficient, the slope and the intercept of the regression line are respectively 0.974, 0.968 and 0.011), which proves that good quality observations can be obtained from Brewer sun scan measurements at 340 nm. The analysis of the monthly and seasonal Brewer AODs at Uccle is consistent with studies at other sites reporting on the seasonal variation of AODs in Europe. The highest values can be observed in summer and spring, whereas more than 50% of the winter AODs are lower than 0.3. On a monthly scale, the lowest AOD are observed in December and the highest values occur in June and April. No clear weekly cycle is observed for Uccle. The current cloud-screening algorithm is still an issue, which means that some AOD values can still be influenced by scattered clouds. This effect can be seen when comparing the calculated monthly mean values of the Brewer with the AERONET measurements

    Tropical tropospheric ozone column retrieval for GOME-2

    Get PDF
    This paper presents the operational retrieval of tropical tropospheric ozone columns (TOCs) from the Second Global Ozone Monitoring Experiment (GOME-2) instruments using the convective-cloud-differential (CCD) method. The retrieval is based on total ozone and cloud property data provided by the GOME Data Processor (GDP) 4.7, and uses above-cloud and clear-sky ozone column measurements to derive a monthly mean TOC between 20° N and 20° S. Validation of the GOME-2 TOC with several tropical ozonesonde sites shows good agreement, with a high correlation between the GOME-2 and sonde measurements, and small biases within ~ 3 DU. The TOC data have been used in combination with tropospheric NO2 measurements from GOME-2 to analyse the effect of the 2009–2010 El Niño–Southern Oscillation (ENSO) on the tropospheric ozone distribution in the tropics. El Niño induced dry conditions in September–October 2009 resulted in relatively high tropospheric ozone columns over the southern Indian Ocean and northern Australia, while La Niña conditions in September–October 2010 resulted in a strong increase in tropospheric NO2 in South America, and enhanced ozone in the eastern Pacific and South America. Comparisons of the GOME-2 tropospheric ozone data with simulations of the ECHAM/MESSy Atmospheric Chemistry (EMAC) model for 2009 El Niño conditions illustrate the usefulness of the GOME-2 TOC measurements in evaluating chemistry climate models (CCMs). Evaluation of CCMs with appropriate satellite observations helps to identify strengths and weaknesses of the model systems, providing a better understanding of driving mechanisms and adequate relations and feedbacks in the Earth atmosphere, and finally leading to improved models
    corecore