4,936 research outputs found

    Cosmic ray isotope measurements with a new Cerenkov X total energy telescope

    Get PDF
    Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes

    Cosmic ray charge and energy spectrum measurements using a new large area Cerenkov x dE/dx telescope

    Get PDF
    In September, 1981, a new 0.5 square meter ster cosmic ray telescope was flown to study the charge composition and energy spectrum of cosmic ray nuclei between 0.3 and 4 GeV/nuc. A high resolution Cerenkov counter, and three dE/dx measuring scintillation counters, including two position scintillators were contained in the telescope used for the charge and energy spectrum measurements. The analysis procedures did not require any large charge or energy dependent corrections, and absolute fluxes could be obtained to an accuracy approximately 5%. The spectral measurements made in 1981, at a time of extreme solar modulation, could be compared with measurements with a similar telescope made by our group in 1977, at a time of minimum modulation and can be used to derive absolute intensity values for the HEAO measurements made in 1979 to 80. Using both data sets precise energy spectra and abundance ratios can be derived over the entire energy range from 0.3 to greater than 15 GeV/nuc

    Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    Get PDF
    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal, through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor

    p, He, and C to Fe cosmic-ray primary fluxes in diffusion models: Source and transport signatures on fluxes and ratios

    Full text link
    The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up to Fe) are a means to indirectly access the source spectrum of cosmic rays. We check the compatibility of the primary fluxes with the transport parameters derived from the B/C analysis, but also if they bring further constraints. Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below 1\sim 1 TeV/n. Fits on the primary fluxes alone do not provide physical constraints on the transport parameters. If we let free the source spectrum dQ/dE=qβηSRαdQ/dE = q \beta^{\eta_S} {\cal R}^{-\alpha} and fix the diffusion coefficient K(R)=K0βηTRδK(R)= K_0\beta^{\eta_T} {\cal R}^{\delta} such as to reproduce the B/C ratio, the MCMC analysis constrains the source spectral index α\alpha to be in the range 2.22.52.2-2.5 for all primary species up to Fe, regardless of the value of the diffusion slope δ\delta. The ηS\eta_S low-energy shape of the source spectrum is degenerate with the low-energy shape ηT\eta_T of the diffusion coefficient: we find ηSηT0\eta_S-\eta_T\approx 0 for p and He data, but ηSηT1\eta_S-\eta_T\approx 1 for C to Fe primary species. This is consistent with the toy-model calculation in which the shape of the p/He and C/O to Fe/O data is reproduced if ηSηT01\eta_S-\eta_T\approx 0-1 (no need for different slopes α\alpha). When plotted as a function of the kinetic energy per nucleon, the low-energy p/He ratio is shaped mostly by the modulation effect, whereas primary/O ratios are mostly shaped by their destruction rate.Comment: 18 pages, 14 figures: accepted in A&A (1 table added

    Herwig++ 2.0 Release Note

    Get PDF
    A new release of the Monte Carlo program Herwig++ (version 2.0) is now available. This is the first version of the program which can be used for hadron-hadron physics and includes the full simulation of both initial- and final-state QCD radiation.Comment: Source code and additional information available at http://hepforge.cedar.ac.uk/herwig

    Systematic uncertainties on the cosmic-ray transport parameters: Is it possible to reconcile B/C data with delta = 1/3 or delta = 1/2?

    Full text link
    The B/C ratio is used in cosmic-ray physics to constrain the transport parameters. However, from the same set of data, the various published values show a puzzling large scatter of these parameters. We investigate the impact of using different inputs (gas density and hydrogen fraction in the Galactic disc, source spectral shape, low-energy dependence of the diffusion coefficient, and nuclear fragmentation cross-sections) on the best-fit values of the transport parameters. We quantify the systematics produced when varying these inputs, and compare them to statistical uncertainties. We discuss the consequences for the slope of the diffusion coefficient delta. The analysis relies on the propagation code USINE interfaced with the Minuit minimisation routines. We find the typical systematic uncertainties to be larger than the statistical ones. The several published values of delta (from 0.3 to 0.8) can be recovered when varying the low-energy shape of the diffusion coefficient and the convective wind strength. Models including a convective wind are characterised by delta > 0.6, which cannot be reconcile with the expected theoretical values (1/3 and 1/2). However, from a statistical point of view (chi^2 analysis), models with both reacceleration and convection-hence large delta-are favoured. The next favoured models in line yield delta that can be accommodated with 1/3 and 1/2, but require a strong upturn of the diffusion coefficient at low energy (and no convection). To date, using the best statistical tools, the transport parameter determination is still plagued by many unknowns at low energy (~ GeV/n). To disentangle between all these configurations, measurements of the B/C ratio at TeV/n energies and/or combination with other secondary-to-primary ratios is necessary.Comment: 12 pages, 7 figures, minor language corrections to match the A&A accepted versio
    corecore