94 research outputs found

    Psip1/Ledgf p75 restrains<i>Hox</i>gene expression by recruiting both trithorax and polycomb group proteins

    Get PDF
    Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax familymember MLL (myeloid/lymphoid or mixedlineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins toHOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1-/- cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research

    A t(11;15) fuses MLL to two different genes, AF15q14 and a novel gene MPFYVE on chromosome 15

    Get PDF
    The mixed lineage leukemia gene (MLL, also known as HRX, ALL-1 and Htrx) located at 11q23 is involved in translocations with over 40 different chromosomal bands in a variety of leukemia subtypes. Here we report our analysis of a rare but recurring translocation, t(11;15)(q23;q14). This translocation has been described in a small subset of cases with both acute myeloblastic leukemia and ALL. Recent studies have shown that MLL is fused to AF15q14 in the t(11;15). Here we analyse a sample from another patient with this translocation and confirm the presence of an MLL-AF15q14 fusion. However, we have also identified and cloned another fusion transcript from the same patient sample. In this fusion transcript, MLL is fused to a novel gene, MLL partner containing FYVE domain (MPFYVE). Both MLL-AF15q14 and MLL-MPFYVE are in-frame fusion transcripts with the potential to code for novel fusion proteins. MPFYVE is also located on chromosome 15, approximately 170 kb telomeric to AF15q14. MPFYVE contains a highly conserved motif, the FYVE domain which, in other proteins, has been shown to bind to phosphotidyl-inositol-3 phosphate (PtdIns(3)P). The MLL-MPFYVE fusion may be functionally important in the leukemia process in at least some patients containing this translocation

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    Comparison of C. elegans and C. briggsae Genome Sequences Reveals Extensive Conservation of Chromosome Organization and Synteny

    Get PDF
    To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism–based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80–110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently

    Characterisation of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing

    Get PDF
    The recently released draft horse genome is incompletely characterised in terms of its repetitive element profile. This paper presents characterisation of the endogenous retrovirus (ERVs) of the horse genome based on a data-mining strategy using murine leukaemia virus proteins as queries. 978 ERV gene sequences were identified. Sequences were identified from the gamma, epsilon and betaretrovirus genera. At least one full length gammaretroviral locus was identified, though the gammaretroviral sequences are very degenerate. Using these data the RNA expression of these ERVs were derived from RNA transcriptome data from a variety of equine tissues. Unlike the well studied human and murine ERVs there do not appear to be particular phylogenetic groups of equine ERVs that are more transcriptionally active. Using this novel approach provided a more technically feasible method to characterise ERV expression than previous studies

    Comparative and demographic analysis of orang-utan genomes

    Get PDF
    Orang-utan- is derived from a Malay term meaning man of the forest- and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N e) expanded exponentially relative to the ancestral N e after the split, while Bornean N e declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts. © 2011 Macmillan Publishers Limited. All rights reserved

    A systematic genome-wide analysis of zebrafish protein-coding gene function

    Get PDF
    Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches1, 2, 3 and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes3, 4, this number falls considerably short of the more than 22,000 mouse protein-coding genes5. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning6, insertional mutagenesis7, 8, 9, antisense morpholino oligonucleotides10, targeted re-sequencing11, 12, 13, and zinc finger and TAL endonucleases14, 15, 16, 17 have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes18. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence18, 19, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis

    Design and implementation of a generalized laboratory data model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigators in the biological sciences continue to exploit laboratory automation methods and have dramatically increased the rates at which they can generate data. In many environments, the methods themselves also evolve in a rapid and fluid manner. These observations point to the importance of robust information management systems in the modern laboratory. Designing and implementing such systems is non-trivial and it appears that in many cases a database project ultimately proves unserviceable.</p> <p>Results</p> <p>We describe a general modeling framework for laboratory data and its implementation as an information management system. The model utilizes several abstraction techniques, focusing especially on the concepts of inheritance and meta-data. Traditional approaches commingle event-oriented data with regular entity data in <it>ad hoc </it>ways. Instead, we define distinct regular entity and event schemas, but fully integrate these via a standardized interface. The design allows straightforward definition of a "processing pipeline" as a sequence of events, obviating the need for separate workflow management systems. A layer above the event-oriented schema integrates events into a workflow by defining "processing directives", which act as automated project managers of items in the system. Directives can be added or modified in an almost trivial fashion, i.e., without the need for schema modification or re-certification of applications. Association between regular entities and events is managed via simple "many-to-many" relationships. We describe the programming interface, as well as techniques for handling input/output, process control, and state transitions.</p> <p>Conclusion</p> <p>The implementation described here has served as the Washington University Genome Sequencing Center's primary information system for several years. It handles all transactions underlying a throughput rate of about 9 million sequencing reactions of various kinds per month and has handily weathered a number of major pipeline reconfigurations. The basic data model can be readily adapted to other high-volume processing environments.</p

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd
    corecore