184 research outputs found

    Polyethylene and metal debris generated by non-articulating surfaces of modular acetabular components

    Get PDF
    We report a prospective study of the liner-metal interfaces of modular uncemented acetabular components as sources of debris. We collected the pseudomembrane from the screw-cup junction and the empty screw holes of the metal backing of 19 acetabula after an average implantation of 22 months. Associated osteolytic lesions were separately collected in two cases. The back surfaces of the liners and the screws were examined for damage, and some liners were scanned by electron microscopy. The tissues were studied histologically and by atomic absorption spectrophotometry to measure titanium content. The pseudomembrane from the screw-cup junction contained polyethylene debris in seven specimens and metal debris in ten. The material from empty screw holes was necrotic tissue or dense fibroconnective tissue with a proliferative histiocytic infiltrate and foreign-body giant-cell reaction. It contained polyethylene debris in 14 cases and metal in five. The two acetabular osteolytic lesions also showed a foreign-body giant-cell reaction to particulate debris. The average titanium levels in pseudomembranes from the screw-cup junction and the empty screw holes were 959 micrograms/g (48 to 11,900) and 74 micrograms/g (0.72 to 331) respectively. The tissue from the two lytic lesions showed average titanium levels of 139 and 147 micrograms/g respectively. The back surfaces of the PE liners showed surface deformation, burnishing, and embedded metal debris. All 30 retrieved screws demonstrated fretting at the base of the head and on the proximal shaft. Non-articular modular junctions create new interfaces for the generation of particulate debris, which may cause granulomatous reaction

    Unsettling sustainability: the poetics of discomfort

    Get PDF
    peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=rgrl2

    The Timing of Feedback to Early Visual Cortex in the Perception of Long-Range Apparent Motion

    Get PDF
    When 2 visual stimuli are presented one after another in different locations, they are often perceived as one, but moving object. Feedback from area human motion complex hMT/V5+ to V1 has been hypothesized to play an important role in this illusory perception of motion. We measured event-related responses to illusory motion stimuli of varying apparent motion (AM) content and retinal location using Electroencephalography. Detectable cortical stimulus processing started around 60-ms poststimulus in area V1. This component was insensitive to AM content and sequential stimulus presentation. Sensitivity to AM content was observed starting around 90 ms post the second stimulus of a sequence and most likely originated in area hMT/V5+. This AM sensitive response was insensitive to retinal stimulus position. The stimulus sequence related response started to be sensitive to retinal stimulus position at a longer latency of 110 ms. We interpret our findings as evidence for feedback from area hMT/V5+ or a related motion processing area to early visual cortices (V1, V2, V3)

    Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST.

    Get PDF
    In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered. With the variety of exposure routes available, there is potential for NPs to reach every organ in the body but we know little about the impact this might have. The main objective of the FP7 NanoTEST project ( www.nanotest-fp7.eu ) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied to new medical NPs as they are developed

    Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw

    Get PDF
    We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation

    Modelling fast forms of visual neural plasticity using a modified second-order motion energy model

    Get PDF
    The Adelson-Bergen motion energy sensor is well established as the leading model of low-level visual motion sensing in human vision. However, the standard model cannot predict adaptation effects in motion perception. A previous paper Pavan et al.(Journal of Vision 10:1-17, 2013) presented an extension to the model which uses a first-order RC gain-control circuit (leaky integrator) to implement adaptation effects which can span many seconds, and showed that the extended model's output is consistent with psychophysical data on the classic motion after-effect. Recent psychophysical research has reported adaptation over much shorter time periods, spanning just a few hundred milliseconds. The present paper further extends the sensor model to implement rapid adaptation, by adding a second-order RC circuit which causes the sensor to require a finite amount of time to react to a sudden change in stimulation. The output of the new sensor accounts accurately for psychophysical data on rapid forms of facilitation (rapid visual motion priming, rVMP) and suppression (rapid motion after-effect, rMAE). Changes in natural scene content occur over multiple time scales, and multi-stage leaky integrators of the kind proposed here offer a computational scheme for modelling adaptation over multiple time scales. © 2014 Springer Science+Business Media New York

    Activity in Inferior Parietal and Medial Prefrontal Cortex Signals the Accumulation of Evidence in a Probability Learning Task

    Get PDF
    In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes

    Improving quality in nanoparticle-induced cytotoxicity testing by a tiered inter-laboratory comparison study

    Get PDF
    The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.Web of Science108art. no. 143

    Significance of Elevated Blood Metal Ion Levels in Patients with Metal-on-Metal Prostheses: An Evaluation of Oxidative Stress Markers

    Get PDF
    It is widely known that cobalt and chromium ions can enhance the production of reactive oxygen species, known to be damaging to cells by disturbing their redox status and then generating oxidative stress. The aim of the present study was to determine if increased metal ion levels induce a state of oxidative stress in patients with metal-on-metal (MM) hip arthroplasty. Results indicated that there was no significant difference in the concentration of oxidative stress markers (total antioxidants, peroxides, and nitrated proteins) in the patients with MM bearings compared to patients without prostheses. The activity antioxidant enzymes was stable (catalase and glutathione peroxidase) or slightly decreased (superoxide dismutase and heme oxygenase-1) over time. This work is the first to determine the biological effects of metal ions released from MM hip implants with regards to mid-term systemic oxidative stress and showed that the increased levels of Co and Cr ions are not associated with significant oxidative stress damage in the plasma of patients with these implants
    corecore