9,751 research outputs found

    On giant piezoresistance effects in silicon nanowires and microwires

    Full text link
    The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon

    An exactly solvable model of a superconducting to rotational phase transition

    Full text link
    We consider a many-fermion model which exhibits a transition from a superconducting to a rotational phase with variation of a parameter in its Hamiltonian. The model has analytical solutions in its two limits due to the presence of dynamical symmetries. However, the symmetries are basically incompatible with one another; no simple solution exists in intermediate situations. Exact (numerical) solutions are possible and enable one to study the behavior of competing but incompatible symmetries and the phase transitions that result in a semirealistic situation. The results are remarkably simple and shed light on the nature of phase transitions.Comment: 11 pages including 1 figur

    Effect of the Pauli principle on photoelectron spin transport in p+p^+ GaAs

    Full text link
    In p+ GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically and experimentally by imaging the spin polarization profile as a function of distance from a tightly-focussed light excitation spot. Under degeneracy of the electron gas (high concentration, low temperature), a dip at the center of the polarization profile appears with a polarization maximum at a distance of about 2  Όm2 \; \mu m from the center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state photo-electron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization dip. Thermoelectric currrents are predicted to depend on spin under degeneracy (spin Soret currents), but these currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin drag and bandgap renormalization are negligible due to electrostatic screening by the hole gas

    Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network

    Full text link
    We investigate weak localization in metallic networks etched in a two dimensional electron gas between 25 25\:mK and 750 750\:mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T≳0.3 T\gtrsim0.3\:K we find \Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and \Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.Comment: LaTeX, 5 pages, 4 eps figure

    The use of preferred social stimuli as rewards for rhesus macaques in behavioural neuroscience

    Get PDF
    Macaques are often motivated to perform in neuroscientific experiments by implementing fluid restriction protocols. Daily access to water is controlled and the monkeys are rewarded with droplets of fluid for performing correct trials in the laboratory. Although these protocols are widely used and highly effective, it is important from a 3Rs perspective to investigate refinements that may help to lessen the severity of the fluid restriction applied. We assessed the use of social stimuli (images of conspecifics) as rewards for four rhesus macaques performing simple cognitive tasks. We found that individual preferences for images of male faces, female perinea and control stimuli could be identified in each monkey. However, using preferred images did not translate into effective motivators on a trial-by-trial basis: animals preferred fluid rewards, even when fluid restriction was relaxed. There was no difference in the monkeys’ performance of a task when using greyscale versus colour images. Based on our findings, we cannot recommend the use of social stimuli, in this form, as a refinement to current fluid restriction protocols. We discuss the potential alternatives and possibilities for future research

    Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density

    Full text link
    Carrier and spin recombination are investigated in p-type GaAs of acceptor concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly neutral and photoelectrons can either recombine with holes bound to acceptors (e-A0 line) or form excitons which are mostly trapped on neutral acceptors forming the (A0X) complex. It is found that the spin lifetime is shorter for electrons that recombine through the e-A0 transition due to spin relaxation generated by the exchange scattering of free electrons with either trapped or free holes, whereas spin flip processes are less likely to occur once the electron forms with a free hole an exciton bound to a neutral acceptor. An increase of exci- tation power induces a cross-over to a regime where the bimolecular band-to-band (b-b) emission becomes more favorable due to screening of the electron-hole Coulomb interaction and ionization of excitonic complexes and free excitons. Then, the formation of excitons is no longer possible, the carrier recombination lifetime increases and the spin lifetime is found to decrease dramatically with concentration due to fast spin relaxation with free photoholes. In this high density regime, both the electrons that recombine through the e-A0 transition and through the b-b transition have the same spin relaxation time.Comment: 4 pages, 5 figure

    Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt

    Full text link
    The spin dependence of the photoelectron tunnel current from free standing GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The measured spin asymmetry (A) resulting from a change in light helicity, reaches +/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V applied to the GaAs. This decrease is a result of the drop in the photoelectron spin polarization that results from a reduction in the GaAs surface recombination velocity. The sign of A changes with that of the Cobalt magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%

    Vector coherent state representations, induced representations, and geometric quantization: II. Vector coherent state representations

    Get PDF
    It is shown here and in the preceeding paper (quant-ph/0201129) that vector coherent state theory, the theory of induced representations, and geometric quantization provide alternative but equivalent quantizations of an algebraic model. The relationships are useful because some constructions are simpler and more natural from one perspective than another. More importantly, each approach suggests ways of generalizing its counterparts. In this paper, we focus on the construction of quantum models for algebraic systems with intrinsic degrees of freedom. Semi-classical partial quantizations, for which only the intrinsic degrees of freedom are quantized, arise naturally out of this construction. The quantization of the SU(3) and rigid rotor models are considered as examples.Comment: 31 pages, part 2 of two papers, published versio
    • 

    corecore