It is shown here and in the preceeding paper (quant-ph/0201129) that vector
coherent state theory, the theory of induced representations, and geometric
quantization provide alternative but equivalent quantizations of an algebraic
model. The relationships are useful because some constructions are simpler and
more natural from one perspective than another. More importantly, each approach
suggests ways of generalizing its counterparts. In this paper, we focus on the
construction of quantum models for algebraic systems with intrinsic degrees of
freedom. Semi-classical partial quantizations, for which only the intrinsic
degrees of freedom are quantized, arise naturally out of this construction. The
quantization of the SU(3) and rigid rotor models are considered as examples.Comment: 31 pages, part 2 of two papers, published versio