106 research outputs found

    Wetting morphologies on an array of fibers of different radii

    Get PDF
    We investigate the equilibrium morphology of a finite volume of liquid placed on two parallel rigid fibers of different radii. As observed for identical radii fibers, the liquid is either in a column morphology or adopts a drop shape depending on the inter-fiber distance. However the cross-sectional area and the critical inter-fiber distance at which the transition occurs are both modified by the polydispersity of the fibers. Using energy considerations, we analytically predict the critical inter-fiber distance corresponding to the transition between the column and the drop morphologies occurs. This distance depends both on the radii of the fibers and on the contact angle of the liquid. We perform experiments using a perfectly wetting liquid on two parallel nylon fibers: the results are in good agreement with our analytical model. The morphology of the capillary bridges between fibers of different radii is relevant to the modeling of large arrays of polydisperse fibers

    The BinaMIcS project: understanding the origin of magnetic fields in massive stars through close binary systems

    Full text link
    It is now well established that a fraction of the massive (M>8 Msun) star population hosts strong, organised magnetic fields, most likely of fossil origin. The details of the generation and evolution of these fields are still poorly understood. The BinaMIcS project takes an important step towards the understanding of the interplay between binarity and magnetism during the stellar formation and evolution, and in particular the genesis of fossil fields, by studying the magnetic properties of close binary systems. The components of such systems are most likely formed together, at the same time and in the same environment, and can therefore help us to disentangle the role of initial conditions on the magnetic properties of the massive stars from other competing effects such as age or rotation. We present here the main scientific objectives of the BinaMIcS project, as well as preliminary results from the first year of observations from the associated ESPaDOnS and Narval spectropolarimetric surveys.Comment: To appear in New Windows on Massive Stars, proceedings of the IAU Symposium 30

    A spherical shell numerical dynamo benchmark with pseudo vacuum magnetic boundary conditions

    Get PDF
    It is frequently considered that many planetary magnetic fields originate as a result of convection within planetary cores. Buoyancy forces responsible for driving the convection generate a fluid flow that is able to induce magnetic fields; numerous sophisticated computer codes are able to simulate the dynamic behaviour of such systems. This paper reports the results of a community activity aimed at comparing numerical results of several different types of computer codes that are capable of solving the equations of momentum transfer, magnetic field generation and heat transfer in the setting of a spherical shell, namely a sphere containing an inner core. The electrically conducting fluid is incompressible and rapidly rotating and the forcing of the flow is thermal convection under the Boussinesq approximation. We follow the original specifications and results reported in Harder & Hansen to construct a specific benchmark in which the boundaries of the fluid are taken to be impenetrable, non-slip and isothermal, with the added boundary condition for the magnetic field <b>B</b> that the field must be entirely radial there; this type of boundary condition for <b>B</b> is frequently referred to as ‘pseudo-vacuum’. This latter condition should be compared with the more frequently used insulating boundary condition. This benchmark is so-defined in order that computer codes based on local methods, such as finite element, finite volume or finite differences, can handle the boundary condition with ease. The defined benchmark, governed by specific choices of the Roberts, magnetic Rossby, Rayleigh and Ekman numbers, possesses a simple solution that is steady in an azimuthally drifting frame of reference, thus allowing easy comparison among results. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement among codes

    Fossil field decay due to nonlinear tides in massive binaries

    Get PDF
    Context. Surface magnetic fields have been detected in 5–10% of isolated massive stars, hosting outer radiative envelopes. They are often thought to have a fossil origin, resulting from the stellar formation phase. Yet, magnetic massive stars are scarcer in (close) short-period binaries, as reported by the BinaMIcS (Binarity and Magnetic Interaction in various classes of Stars) Collaboration. Aims. Different physical conditions in the molecular clouds giving birth to isolated stars and binaries are commonly invoked. In addition, we propose that the observed lower magnetic incidence in close binaries may be due to nonlinear tides. Indeed, close binaries are probably prone to tidal instability, a fluid instability growing upon the equilibrium tidal flow via nonlinear effects. Yet, stratified effects have hitherto been largely overlooked. Methods. We theoretically and numerically investigate tidal instability in rapidly rotating, stably stratified fluids permeated by magnetic fields. We use the short-wavelength stability method to propose a comprehensive (local) theory of tidal instability at the linear onset, discussing damping effects. Then, we propose a mixing-length theory for the mixing generated by tidal instability in the nonlinear regime. We successfully assess our theoretical predictions against proof-of-concept, direct numerical simulations. Finally, we compare our predictions with the observations of short-period, double-lined spectroscopic binary systems. Results. Using new analytical results, cross-validated by a direct integration of the stability equations, we show that tidal instability can be generated by nonlinear couplings of inertia-gravity waves with the equilibrium tidal flow in short-period massive binaries, even against the Joule diffusion. In the nonlinear regime, a fossil magnetic field can be dissipated by the turbulent magnetic diffusion induced by the saturated tidal flows. Conclusions. We predict that the turbulent Joule diffusion of fossil fields would occur in a few million years for several short-period massive binaries. Therefore, turbulent tidal flows could explain the observed dearth of some short-period magnetic binaries

    Tilt-over mode in a precessing triaxial ellipsoid

    Full text link
    The tilt-over mode in a precessing triaxial ellipsoid is studied theoretically and numerically. Inviscid and viscous analytical models previously developed for the spheroidal geometry by Poincar\'e [Bull. Astr. 27, 321 (1910)] and Busse [J. Fluid Mech., 33, 739 (1968)] are extended to this more complex geometry, which corresponds to a tidally deformed spinning astrophysical body. As confirmed by three-dimensional numerical simulations, the proposed analytical model provides an accurate description of the stationary flow in an arbitrary triaxial ellipsoid, until the appearance at more vigorous forcing of time dependent flows driven by tidal and/or precessional instabilities.Comment: http://link.aip.org/link/doi/10.1063/1.350435

    A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions

    Get PDF
    It is frequently considered that many planetary magnetic fields originate as a result of convection within planetary cores. Buoyancy forces responsible for driving the convection generate a fluid flow that is able to induce magnetic fields; numerous sophisticated computer codes are able to simulate the dynamic behaviour of such systems. This paper reports the results of a community activity aimed at comparing numerical results of several different types of computer codes that are capable of solving the equations of momentum transfer, magnetic field generation and heat transfer in the setting of a spherical shell, namely a sphere containing an inner core. The electrically conducting fluid is incompressible and rapidly rotating and the forcing of the flow is thermal convection under the Boussinesq approximation. We follow the original specifications and results reported in Harder & Hansen to construct a specific benchmark in which the boundaries of the fluid are taken to be impenetrable, non-slip and isothermal, with the added boundary condition for the magnetic field B that the field must be entirely radial there; this type of boundary condition for B is frequently referred to as ‘pseudo-vacuum'. This latter condition should be compared with the more frequently used insulating boundary condition. This benchmark is so-defined in order that computer codes based on local methods, such as finite element, finite volume or finite differences, can handle the boundary condition with ease. The defined benchmark, governed by specific choices of the Roberts, magnetic Rossby, Rayleigh and Ekman numbers, possesses a simple solution that is steady in an azimuthally drifting frame of reference, thus allowing easy comparison among results. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement among code

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier–finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere result

    Coherent states for compact Lie groups and their large-N limits

    Full text link
    The first two parts of this article surveys results related to the heat-kernel coherent states for a compact Lie group K. I begin by reviewing the definition of the coherent states, their resolution of the identity, and the associated Segal-Bargmann transform. I then describe related results including connections to geometric quantization and (1+1)-dimensional Yang--Mills theory, the associated coherent states on spheres, and applications to quantum gravity. The third part of this article summarizes recent work of mine with Driver and Kemp on the large-N limit of the Segal--Bargmann transform for the unitary group U(N). A key result is the identification of the leading-order large-N behavior of the Laplacian on "trace polynomials."Comment: Submitted to the proceeding of the CIRM conference, "Coherent states and their applications: A contemporary panorama.
    • 

    corecore