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Abstract

It is frequently considered that many planetary magnetic fields originate as a result of convection within
planetary cores. Buoyancy forces responsible for driving the convection generate a fluid flow that is able to
induce magnetic fields; numerous sophisticated computer codes are able to simulate the dynamical behaviour
of such systems. This paper reports the results of a community activity aimed at comparing numerical results
of several different types of computer codes that are capable of solving the equations of momentum transfer,
magnetic field generation and heat transfer in the setting of a spherical shell, namely a sphere containing
an inner core. The electrically conducting fluid is incompressible and rapidly rotating and the forcing of the
flow is thermal convection under the Boussinesq approximation. We follow the original specifications and
results reported in Harder and Hansen [2005] to construct a specific benchmark in which the boundaries
of the fluid are taken to be impenetrable, non-slip and isothermal, with the added boundary condition for
the magnetic field B that the field must be entirely radial there; this type of boundary condition for B
is frequently referred to as “pseudo-vacuum”. This latter condition should be compared with the more
frequently-used insulating boundary condition. This benchmark is so-defined in order that computer codes
based on local methods, such as finite element, finite volume or finite differences, can handle the boundary
condition with ease. The defined benchmark, governed by specific choices of the Roberts, magnetic Rossby,
Rayleigh and Ekman numbers, possesses a simple solution that is steady in an azimuthally-drifting frame of
reference, thus allowing easy comparison among results. Results from a variety of types of code are reported,
including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and
polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also
a mixed Fourier-finite element code. There is good agreement among codes.
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1 Introduction

Many planets possess magnetic fields that are thought to be generated by thermal and compositional convec-
tion within their electrically conducting cores, creating the so-called self-excited dynamo mechanism. Since
the appearance of the first 3-D self-consistent Boussinesq models of thermal convection almost 20 years ago
[Glatzmaier and Roberts, 1995, Kageyama et al., 1995], interest has grown in calculating numerical solutions
to this physical system. The underlying equations that must be solved are those of momentum conservation,
magnetic field generation and heat transfer. Considering the non-trivial nature and nonlinearity of these
underlying equations, there remains a need to verify that the computer codes provide accurate solutions to
the physical system; it is also important to provide simple reference solutions that allow newly-developed
codes to check that they are correct implementations of the physics, and to allow these codes to assess
their accuracy. The provision of a relatively simple solution with clear diagnostics we term as a benchmark,
and this particular benchmark grew out of discussions initiated at the Studies of the Earth’s Deep Interior
meeting held in Leeds in 2012.

In geophysics, benchmark solutions were provided for mantle convection in cartesian geometries some
decades ago, and in geomagnetism a very useful benchmarking exercise was coordinated by U. Christensen
subsequent to the discovery of a particularly simple dynamo solution [Christensen et al., 2001, Christensen
et al., 2009], hereinafter B1. This benchmark exercise was set in the geometry of a spherical shell, with
convection driven by a temperature difference between an inner core and the outer boundary of the spherical
shell. In the present work we remain with this geometry, it being the appropriate geometry for the core of the
Earth. In B1 three different benchmarks were devised, of both a hydrodynamic and magnetohydrodynamic
nature, these latter benchmarks being convectively-driven dynamos (supporting magnetic fields). It is the
purpose of the present work to study a modification of B1 first presented by Harder and Hansen [2005].
The modification of the magnetic boundary condition from that of B1 is designed to allow computer codes
that are not based on spherical harmonics in the angular direction to conveniently compute solutions. This
is an important development in view of the fact that many new solution strategies are being developed
that are based on “local methods”, examples of which can be found in §4. Central to these benchmarks
is the fact that all of them possess simple solutions, in the form of steadily azimuthally-drifting convection
and magnetic fields. Consequently, kinetic and magnetic energies remain constant and, together with other
properties, these provide very clear diagnostics that are amenable to reproduction by different numerical
techniques.

The modification of the magnetic boundary conditions that we implement requires that the magnetic
field be purely radial on the boundary. Since this condition is approximated by the physical conditions
arising from a boundary made from very high permeability material (sometimes termed “ferromagnetic
material”), the boundary conditions are sometimes referred to as “ferromagnetic boundary conditions” or
“pseudo vacuum conditions”. In a spherical shell the effect of these types of boundary conditions on dynamo
action has been studied by Guervilly and Cardin [2010] and Roberts et al. [2010]. They have been used for
almost 20 years since the pioneering paper of Kageyama et al. [1995].

Our benchmarking exercise has attracted submissions from authors implementing a wide assortment of
computer codes. Of the eight different results submitted, four are computed using a spectral method (in-
volving spherical harmonics in the angular directions) and three are computed with so-called local methods,
namely finite volume or finite element methods; there is also one mixed “global-local” method. A discussion
of the performance of such codes on the original B1 can be found in Wicht et al. [2009]. Of interest is the
fact that the local methods use different approaches to ensuring that magnetic fields are divergence-free.
It is well-known that writing the magnetic field B in terms of a vector potential A as B = ∇ ∧ A will
automatically satisfy the required solenoidality condition. But another approach is to introduce a fictitious
“magnetic pressure” [Brackbill and Barnes, 1980, Tóth, 2000], essentially a Lagrange multiplier for the im-
position of the zero divergence constraint. Of the groups taking part, three use the latter approach while
one uses the A formulation.

The present benchmarking exercise has a sister exercise that is set in a full sphere geometry, described
in Marti et al. [2013]; this full sphere geometry is potentially challenging for some codes as a result of
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the presence of a coordinate singularity at r = 0 when one treats the governing equations in the sphere in
spherical coordinates (r, θ, φ) that are presumably convenient from the point of view of boundary conditions.
Flows in the first two benchmarks of Marti et al. [2013] are driven by thermal convection, again under the
Boussinesq approximation, and in the third by a boundary forcing. The benchmarks 1 and 2 of Marti et al.
[2013] differ from those of B1 in their use of stress-free boundary conditions, rather than non-slip conditions.
In the present work we remain with the same no-slip boundaries of B1. The use of stress-free boundaries can
sometimes cause problems with angular momentum conservation (see the discussion in Jones et al. [2011]).

The present activity is one of several brethren that have recently been provided to the community. A
new benchmark for anelastic convection has recently been described by Jones et al. [2011], and solar mean
field benchmark has also recently been provided by Jouve et al. [2008].

The layout of the paper is as follows: in §2 we describe the physical problems to be addressed. In
§3 we give a brief overview of the different numerical methods that have been employed by the different
contributing teams. In §4 we present and discuss the results from the different codes.

2 The numerical benchmark

Here we define the benchmark in the form of a convection-driven magnetohydrodynamic dynamo in a rotating
spherical shell with “pseudo-vacuum” magnetic boundary condition. We consider a Newtonian fluid with
homogeneous and constant material properties, and describe a solution, first studied by Harder and Hansen
[2005], that is steadily-drifting in azimuth in the rotating frame. Results of the different contributing groups
are presented in §4.

2.1 Magnetohydrodynamic equations

We employ a geometry of a spherical shell of outer radius ro and inner radius ri and fix the radius ratio
ro/ri = 0.35; we denote fluid velocity by u, magnetic field by B and temperature by T , and we adopt the
Boussinesq approximation. The spherical coordinates will be denoted (r, θ, φ) and z is the axis of rotation
of the system. The following symbols denote the parameters of the system: Ω = Ωẑ is the rotation rate,
µ0 is the permeability of free space, ρ0 is the density, ∆T is the temperature difference between the fixed
temperatures on the inner and outer boundaries, ν, κ and η are the kinematic viscosity, thermal diffusivity
and magnetic diffusivity respectively, and α is the thermal expansivity. Choosing a non-dimensionalisation
for time of t = (d2/η)t′, for length of r = dr′ (where d = r0 − ri is the depth of the shell), for magnetic
field of B = (2Ωρ0µ0η)

1
2 B′ and for temperature of T = (∆T )T ′ (where the primed quantities are the

non-dimensional versions), and dropping the primes, we obtain the following equations:(
Ro

∂

∂t
− E∇2

)
u = Rou ∧ (∇ ∧ u) + (∇ ∧B) ∧B + q RaT r − ẑ ∧ u−∇P̂ ,(

∂

∂t
−∇2

)
B = ∇ ∧ (u ∧B),(

∂

∂t
− q∇2

)
T = −u ·∇T,

(1)

∇ ·B = 0, ∇ · u = 0. (2)

These equations have been written in terms of the following dimensionless parameters

Magnetic Rossby number Ro = η/(2Ωd2),
Ekman number E = ν/(2Ωd2),

Modified Rayleigh number Ra =
g α ∆T d

2Ωκ
,

Roberts number q = κ/η.

(3)
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Christensen et al. (2001) [B1] Present benchmark

E/2 E
(1− ε)PRa/2 Ra

Pm/P q
E/(2Pm) Ro
P 2

mEkin Ekin

P 2
mEmag Emag

Pmu u
B/

√
2 B

T T
t/Pm t

Table 1: Conversion table between the present benchmark and B1. The symbols P , Pm and ε are the
Prandtl number, magnetic Prandtl number and the radius ratio respectively of B1.

E Ra q Ro
5× 10−4 32.50 5 10−4

Table 2: Parameters defining the benchmark solution

We note that the Magnetic Rossby number is sometimes referred to as the Magnetic Ekman number.
In B1 the time scale chosen was the viscous diffusion time scale, and some readers may find it beneficial

to have a conversion between the control parameter definitions used here and those used by B1; these, along
with derived quantities, are given in Table 1.

The boundary conditions on T are fixed temperature, thus T = 1 at r = ri = 7/13 and T = 0 at
r = ro = 20/13; boundary conditions on velocity are non-penetration and no slip, thus u = 0 on both
boundaries. For the magnetic field we implement the condition that the field must be purely radial on
both boundaries, a condition that has been used for many years. This condition is significantly easier to
implement in all types of discretised versions of (1), since it represents a local condition. Compared to the
usual electrically-insulating boundary condition that is used in e.g. Christensen et al. [2001], it can be easily
implemented by requiring that

Bθ = Bφ = 0 at r = ri, ro, (4)

The original integrations of Kageyama et al. [1995] as well as subsequent simulations of e.g. Miyagoshi et al.
[2010] have championed the use of this boundary condition. But, as we shall see, it can lead to significant
differences in the solution, compared to the use of the more conventional insulating boundary condition.
The influence of boundary conditions in a Cartesian geometry has been studied by Thelen and Cattaneo
[2000] and by Gissinger et al. [2008] in a cylindrical geometry in the context of the VKS experiment.

Our benchmark uses exactly the same parameters (Table 2) as used in the original dynamo benchmark
[Christensen et al., 2001] but with the modified magnetic boundary conditions studied by Harder and Hansen
[2005].

2.2 Initial conditions

The initial conditions for velocity is a quiescent state u = 0 and for temperature we adopt the same profile
as in Christensen et al. [2001]

T =
rori

r
− ri +

21√
17920π

(1− 3x2 + 3x4 − x6) sin4 θ cos 4ϕ, (5)
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where x = 2r− ri − ro. This describes a conductive state with a perturbation of harmonic degree and order
four super-imposed. The importance of the initial temperature is in the four-fold symmetry which it brings
into the solution.

The initial condition for the magnetic field is very important, as the dynamo for the specified parameters
is sub-critical, in other words it cannot grow from an arbitrary infinitesimal perturbation; Although a variety
of initial conditions has been investigated, it cannot be excluded that different initial conditions may lead
to other dynamo solutions. Thus we prescribe the following initial condition for B in real space:

Br =
1√
2

5
8
−48 ri ro + (4 ro + ri (4 + 3 ro)) 6r − 4(4 + 3 (ri + ro)) r2 + 9 r3

r
cos θ,

Bθ = − 1√
2

15
4

(r − ri) (r − ro) (3 r − 4)
r

sin θ,

Bφ =
1√
2

15
8

sinπ(r − ri) sin 2θ.

(6)

It is easy to see that Bθ = Bφ = 0 at ri and ro, the condition
∂

∂r
(r2Br) = 0|ri,ro is satisfied as well.

The magnetic vector B can be written in terms of the toroidal and poloidal scalar fields, T and P :

B = ∇ ∧ (Tr) + ∇ ∧∇ ∧ (Pr) (7)

The toroidal and poloidal scalars can be decomposed in fully-normalised spherical harmonics Y m
l and radial

functions of the form:
T =

∑
Tm

l (r)Y m
l (θ, φ) (8)

with a similar expression for P ; here we make use of

Y m
l (θ, φ) = Pm

l (cos θ)eimφ (9)

where Pm
l is a Legendre function.

Making use of these expansions, the spectral form of the initial magnetic field is:
T 0

2 =
1√
2

5
4

sinπ (r − ri),

P 0
1 =

1√
2

5
16

(−48 ri ro + (4 ro + ri (4 + 3 ro)) 6r − 4(4 + 3 (ri + ro)) r2 + 9 r3).
(10)

In terms of the magnetic vector potential A, we have the initial condition as


Ar =

1√
2

15
16

r sin[π(r − ri)] cos(2θ) + f1(r) +
∫
{f2(r, θ) + r

∂f2(r, θ)
∂r

}dθ

Aθ = f2(r, θ)

Aφ =
1√
2

5
16

[−48riro + (4ro + ri(4 + 3ro))6r − 4(4 + 3(ri + ro))r2 + 9r3] sin θ + K/(r sin θ)

(11)

where B = ∇ ∧ A; f1, f2 are arbitrary functions and K is an arbitrary constant. For the calculations
performed by Cébron, these functions and constant were taken to be zero.

2.3 The form of the solution

In this section we describe a steadily drifting solution (where the magnetic and kinetic energies are constant
in time) that acts as a dynamo and which is therefore suitable for a benchmark study. The parameters
are those suggested by Harder and Hansen [2005] in which a solution exists that has fourfold symmetry in
longitude and is symmetric about the equator. Just as in Christensen et al. [2001], the solution is steadily
drifting and can be expressed in the form (u,B, T ) = f(r, θ, ϕ−ω t). The influence of the changed boundary
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Figure 1: Properties of the solution, computed using a spectral method by SMJ. (a) The evolution of the
root-mean-square magnetic field versus time, starting from the prescribed initial condition. Although the
solution evolves to a pseudo-steady state in a few tenths of a diffusion time, several magnetic diffusion
times are required to find a true steady state. (b) The energy spectrum decomposed into azimuthal modes,
showing the true four-fold symmetry. (c) The energy spectrum decomposed as a function of spherical
harmonic degree, showing twelve orders of magnitude of decrease by spherical harmonic degree 100. (d)
The magnetic and kinetic energies on a logarithmic energy and time scale.

conditions is substantial in this regime, because the drift of the solution is completely changed. In Case 1 of
Christensen et al. [2001], the drift rate ω is negative, indicating prograde drift; in this benchmark the sign of
the drift is changed, indicating retrograde drift. Figures 1(a) and 1(d) show the evolution of the field with
time, starting with the recommended initial conditions. When the solution is computed with a spherical
harmonic-based code, the spectrum can be seen to have fallen off substantially by spherical harmonic degree
100 (Figure 1(c)). By dint of the fourfold symmetry (Figure 1(b)), spherical harmonic-based codes can
accurately compute the solution by imposing this symmetry if required; this was implemented by some of
the participants. Figures 2-4 show the field and flow structure. Because of the changed boundary condition,
we emphasis that, apart from the fourfold symmetry, this solution is not the same as that of B1. The
change in the drift rate indicates that the pseudo-vacuum boundary condition cannot be considered to be
an approximation to an insulating boundary condition: the physics is entirely altered.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2: Meridional sections through the solution in the steady state. The plane of the figures is that
containing the benchmark point (defined in seq.2.4).(a) Radial magnetic field. (b) Bθ. (c) Bφ. (d) Radial
velocity field. (e) vθ. (f) vφ. (g) Temperature field.

(a) (b) (c)

(d) (e) (f) (g)

Figure 3: Equatorial sections through the solution in the steady state. (a) Radial magnetic field. (b) Bθ.
(c) Bφ. (d) Radial velocity field. (e) vθ. (f) vφ. (g) Temperature field.
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3. Some suggestions for the prospective benchmark paper

We would like to make the following suggestions.

• The paper of Christensen et al. [8] is well known and it will be useful to include a conversion
table between the values quoted in the two papers. We found the following table useful when
performing the benchmark calculation.

Christensen et al. [8] New benchmark

E/2 E
(1− η)PRa/2 Ra

Pm/P q
E/(2Pm) Ro
P 2

mEkin Ekin

P 2
mEmag Emag

Pmu u

B/
√

2 B

T T
t/Pm t

Table 2. Conversion table.

Figure 1. The left column shows isolines of the azimuthally-averaged uϕ (top) and
Bϕ (bottom) in the meridional plane. The right column shows isolines of ur (top) at
midradius r = (ri + ro)/2 and of Br (bottom) at the surface of the shell r = ro.

• Additional plots of the solution may be useful, e.g. the plots shown in figure 1. The azimuthally
averaged quantities are useful as they can be found without reference to the specific point at
which local data is requested. The plots on the spherical surface give good overall impression of
the solution. Feel free to reproduce the suggested plots in a style similar to other plots that will
be included in the paper.

Figure 4: The left column shows isolines of the azimuthally-averaged uϕ (top) and Bϕ (bottom) in the
meridional plane. The right column shows isolines of ur (top) at mid-radius r = (ri + ro)/2 and of Br

(bottom) at the surface of the shell r = ro.

8



2.4 Requested results

Global averages and local data at specific points were requested from the participating groups. The angular
drift speed ω, and magnetic and kinetic energies were requested; the latter two are defined as

Emag =
1

2 Ro

∫
B2 dV (12)

Ekin =
1
2

∫
u2 dV . (13)

where the integration volume is the fluid shell. Following Christensen et al. [2001], we also request local
data. A point where local data are to be taken is fixed in the drifting reference frame. We take a point at a
mid depth (r = (ri + ro)/2) in the equatorial plane (θ = π/2) whose φ-coordinate is given by the conditions

ur = 0 and
∂ur

∂ϕ
> 0. For this point uφ, Bθ and T are requested.

3 Contributing numerical codes

Here we give a short description of the numerical techniques and algorithms used by each simulation group.
Tilgner (T): Pseudo-spectral code using a spherical harmonic expansion in the angular variables and

Chebyshev polynomials in radius, embedded in a poloidal-toroidal representation for magnetic field and
velocity. Time stepping is implemented by a combination of an implicit Crank-Nicolson scheme for the
diffusion terms and an explicit Adams-Bashforth scheme for the Coriolis and the nonlinear terms; both
schemes are second order accurate. Early versions of the code are described in Tilgner and Busse [1997],
Tilgner [1999].

Sheyko, Marti & Jackson (SMJ): Spectral simulation using spherical harmonics for the angular com-
ponent and finite differences in radius. The incompressibility condition is guaranteed by the use of a
toroidal/poloidal decomposition of the vector fields. A second order predictor-corrector scheme is used for
the time integration. The code was developed by Ashley Willis (see Willis et al. [2007]), with subsequent
optimization for the Cray XMP.

Takehiro, Sasaki and Hayashi (TSH): Spectral simulation using spherical harmonics for the angular
components and Chebychev polynomials in radius (see Sasaki et al. [2012]). The incompressibility condition
is guaranteed by the use of a toroidal/poloidal decomposition of the vector fields. The time integration
is performed with a Crank-Nicolson scheme for the diffusive terms and a second order Adams-Bashforth
scheme for the other terms.

Simitev and Busse (SB): Pseudo-spectral numerical code using spherical harmonics expansion in the
angular variables and Chebyshev polynomials in radius. Time stepping is implemented by a combination of
an implicit Crank-Nicolson scheme for the diffusion terms and an explicit Adams-Bashforth scheme for the
Coriolis and the nonlinear terms; both schemes are second order accurate. Early versions of the code are
described in Tilgner and Busse [1997], Tilgner [1999] and the code has been extensively modified and used
for a number of years Simitev and Busse [2005], Busse and Simitev [2006, 2008], Simitev and Busse [2009,
2012].

Cébron (C): Finite element method simulation using the standard Lagrange element P1-P2, which is
linear for the pressure field and quadratic for the velocity field, and a Galerkin Least-Squares (GLS) sta-
bilization method (Hauke and Hughes [1994]). Quadratic Lagrange elements are used for the temperature
field, and quadratic Nédélec (edge) elements are used for vector potential A, such that B = ∇ ∧ A. The
(unstructured) mesh is made of prisms in the boundary layer and tetrahedrons in the bulk. The incom-
pressibility of the velocity field is imposed using a penalty method. The timestepping uses the Implicit
Differential-Algebraic solver (IDA solver), based on variable-coefficient Backward Differencing Formulas (eg
Hindmarsh et al. [2005]). The integration method in IDA is variable-order, the order ranging between 1
and 5. At each time step, the system is solved in a fully coupled way with a geometric multigrid GMRES
iterative solver. This is all implemented via the commercial code COMSOL Multiphysics R© (see Cébron
et al. [2012] for further details).
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Ribeiro, Nore, and Guermond (RNG): Hybrid Fourier and finite element method using a Fourier de-
composition in the azimuthal direction and the standard Lagrange elements P1-P2 in the meridian section
(with P1 for the pressure and P2 for the velocity field). The meridian mesh is made of quadratic trian-
gles. The velocity and pressure are decoupled by using the rotational pressure-correction method. The
timestepping uses the second-order Backward Difference Formula (BDF2). The nonlinear terms are made
explicit and approximated using second-order extrapolation in time. The code is parallelized in Fourier
space and in meridian sections (domain decomposition with METIS Karypis and Kumar [2009]) using MPI
and PETSC (Portable, Extensible Toolkit for Scientific Computation) Balay et al. [2012b,a, 1997]. This is
implemented in the code SFEMaNS (for Spectral/Finite Element method for Maxwell and Navier-Stokes
equations) Guermond et al. [2007, 2009, 2011].

Vantieghem (V): Massively MPI-parallel unstructured finite-volume code by Vantieghem, Moureau and
Knaepen [Vantieghem, 2011], based on a domain decomposition with METIS [Karypis and Kumar, 2009].
For this benchmark, a grid of the cubed-sphere type was used. All the spatial discretisation operators
are based on finite-difference-like stencils. To advance the equations in time, a semi-implicit Crank-
Nicolson/Adams-Bashforth formulation is used for the non-linear terms, and a Crank-Nicolson discretisation
for the diffusive, Coriolis and buoyancy terms. The pressure-velocity splitting is based on a canonical frac-
tional step-method [Kim and Moin, 1985]. A Lagrange multiplier (termed magnetic pressure) is added to
the induction equations to enforce the divergence-free constraint on B. The pressure Poisson equations are
solved using a BiCGstab(2)-method.

Zhan and Schubert (ZS): This approach uses the “element-by-element” finite element method described
in Chan et al. [2007]. The magnetic field itself is used as the field that is solved for (without the use of a
vector potential) and the divergence-free condition is implemented using a Lagrange multiplier. Quadratic
Hood-Taylor elements are used for u, T and B and linear elements for the pressure.

4 Results

Figure 5 summarises the results from the contributing codes. We plot them as a function of resolu-
tion R based on the number of degrees of freedom in the calculation. For grid-based codes, R is sim-
ply N

1/3
grid where Ngrid is the number of elements or volumes in the calculation. For spectral codes R =(

Nr ·
(
Lmax(2Mmax + 1)−M2

max + Mmax + 1
))1/3. The same approach was used in B1.

It is clear that all participants succeeded in finding the correct solution to the benchmark. The only
variability is in the fidelity with which the solution is determined, but in all cases the agreement is better
than 6%, this worst case being for the medium-resolution calculation of C; we neglect the two extremely
low resolution results supplied by T in this respect. The benchmark by nature is a very smooth and regular
solution, and therefore spectral methods have a distinct advantage. It is clear that accurate solutions can be
computed with a truncation level of degree 42 in spherical harmonics and either 33 Chebychev polynomials
in radius or about 80 finite difference points in radius. Figure 5 shows that the spectral methods of SMJ, T,
TSH and SB all agree almost perfectly with one another and can be used to create a reference solution. It is
unfortunate that two of the local codes only present one point. In the case of C, using the commercial code
COMSOL, this is because the version of the code used is purely serial; it therefore takes a tremendously
long time (several months on a single core) to run the 5.12 diffusion times of the solution reported. The
two local codes that allow us a comparison of rates of convergence are the finite volume code by V and the
finite element code by ZS. The ZS code appears to have reached converged values for all quantities. For
the local values these are very accurate, with discrepancy from spectral solutions at the level of 0.21-0.52%;
for an unknown reason the discrepancy is larger when global quantities are compared, with the discrepancy
being at the level of 1.4% in the magnetic energy. The finite volume code by V needs higher resolution
for convergence to have been demonstrated. Drifting solution can be a problem for local codes because the
solution drift with respect to the grid leads to additional oscillations even in the energies. To illustrate
the size of the problem, for solution V the reported values are averages over 0.5 magnetic diffusion times.
Typical amplitudes for the oscillation of the magnetic energy are 0.3% (at resolution 64), 0.12% (96) and
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Nr L M R uφ Bθ T Emag Ekin ω Author
50 32 29 37 -58.0792 0.986 0.4261 79849.4 14892.8 3.7656 SMJ
80 42 42 52 -58.167 0.9931 0.4259 80076.3 14847.3 3.751 SMJ
96 48 48 61 -58.1705 0.9935 0.4259 80076.2 14846.9 3.7489 SMJ
96 60 53 70 -58.1796 0.9929 0.426 80074.7 14847.2 3.749 SMJ

128 64 64 81 -58.1786 0.993 0.4259 80072.7 14846.9 3.7489 SMJ
200 100 100 126 -58.1786 0.993 0.4259 80072.7 14846.5 3.7488 SMJ
33 32 64 33 -58.2075 0.99201 0.42587 82313.8 14531.4 4.02768 TSH
33 64 128 51 -58.1901 0.99423 0.42577 80082.1 14844.1 3.73999 TSH
33 128 256 81 -58.1825 0.99318 0.42587 80073.1 14845.7 3.73999 TSH
21 21 21 21 -58.307 0.9012 0.4391 79914.4 15191.1 3.736 T
33 21 21 25 -58.367 0.9011 0.4394 79893.9 15214.9 3.732 T
33 42 42 39 -58.1615 0.9931 0.4259 80071.2 14845.8 3.75 T
33 84 84 62 -58.1785 0.993 0.4259 80072.7 14846 3.75 T
65 42 42 49 -58.165 0.993 0.4259 80067.8 14846.8 3.751 T
65 84 84 77 -58.179 0.993 0.4259 80068.3 14847.2 3.751 T
33 42 11 30 -58.1695 0.9934 0.4259 80057.2 14815.3 3.6998 SB∗

33 64 65 51 -58.1765 0.9928 0.4259 80000.7 14822.8 3.7484 SB
41 96 97 72 -58.1775 0.9929 0.4259 80025.7 14831.3 3.7488 SB

129 64 65 81 -58.177 0.9929 0.4259 80068.9 14845.2 3.7487 SB
90 180 60 99 -58.2985 1.0079 0.4224 80292.2 14836 RNG∗†

Table 3: Spectral codes contributing to the benchmark. The number of significant figures given are those
reported by the authors, thus there are different numbers of significant figures, particularly for local quanti-
ties. Nr, L and M are the number of radial nodes or modes, and maximum spherical harmonic degree and
order respectively. R is the overall resolution in one direction. The code by RNG is a mixed spectral-finite
element. Notes: ∗ was run with assumed 4-fold symmetry. † The three resolutions (90, 180, 60) refer to Nr,
Nz and Nφ respectively.

0.06% (128); note that these values are small compared to the difference with the pseudo-spectral solution,
so that the averaging interval does not fundamentally affect the reported values.

Definitive values for the benchmark are taken from the most highly resolved calculations of SMJ, T,
TSH and SB (see Tables 2 and 3), though note a very small discrepancy in the drift rate computed by TSH;
this quantity is usually the most difficult to determine precisely, as in the sister exercises B1 and Marti et al.
[2013]. We present definitive values for the benchmark with error corridors in Table 4.

Indicative time steps used by the codes at the highest resolutions are 4 × 10−6 (V), 3 × 10−6 (SB),
2.5×10−6 (TSH), 1.6×10−5 (SMJ). Code V was run on 512 processors at the highest resolution. Note that
the choice of magnetic Prandtl number 5 results in a dynamo solution that is close to the onset of stable
dynamo action. Therefore, the stable solution only settles in slowly, as can be observed from figure 1(a), and
long time integrations are required to obtain stable solutions. This aspect made this benchmark particularly
challenging, especially for local codes that are computationally much more expensive than spectral ones.

5 Discussion

As was the case for the benchmark B1 and the sister study of Marti et al. [2013], dynamos in the weakly-
driven regime have a simple structure that offer a distinct advantage to spectral methods. Despite the
view that spectral codes will be replaced by local methods because of superior parallelism, it is clear that
spectral codes will continue to have an important role on strictly spherical problems. The current code of
SMJ (originating with Willis et al. [2007]) shows good scaling on up to 1200 processors on a CRAY XE6
architecture, while the fully spectral code of Marti (described in Marti et al. [2013]) has been tested on up
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N R uφ Bθ T Emag Ekin ω Author
64 116 -56.697 0.9092 0.4277 75162.4 15293.7 3.8236 V
96 174 -57.555 0.9462 0.4271 77572.0 15064.7 3.7712 V

128 232 -57.932 0.9746 0.4263 79012.3 14940.9 3.7457 V
50 91 -60.43 0.9614 0.4274 77643.3 15476.8 3.962 ZS
80 145 -58.48 0.9782 0.4271 78324.1 15136.6 3.835 ZS
96 174 -58.32 0.9974 0.4270 81621.7 15035.7 3.798 ZS

128 232 -58.51 0.9955 0.4270 81211.4 15032.7 3.794 ZS
200 363 -58.48 0.9951 0.4270 81209.6 15031.5 3.794 ZS

71 74756.4 14873.4 3.93 C

Table 4: Local codes contributing to the benchmark. For V and ZS, R = 61/3N is a measure of the overall
resolution, since N is the radial resolution. In the case of V this is exact, since a cubed sphere with 6N3

grid points is used; for ZS the relationship is approximate but quite accurate.

uφ Bθ T Emag Ekin ω

Value 58.18 0.9930 0.4259 80071 14846 3.7495
Error 0.003 0.0001 0.00001 2.5 1 0.001
Percentage error 0.005% 0.01% 0.002% 0.003% 0.006% 0.02%

Table 5: Recommended values for the benchmark, derived from the four spectral solutions, along with
suggested error corridors expressed in absolute and percentage terms. For the estimate of ω we ommitted
the TSH solution.

to 2000 processors, again with good performance.
We should perhaps comment on the overall accuracy of local codes on these spherical problems. In the

original B1 dynamo benchmark, the code of Chan et al. [2007] showed agreement with Case 1 at a level of
7.7%, a discrepancy that must largely be attributable to the difficulties in handling an insulating exterior.
The present benchmark dispenses with that difficulty, and the better agreement at the level of 1.4% reported
by ZS must now be attributable to the actual solution of the differential equations themselves in the fluid.
We note parenthetically that the finite volume formulation of Harder and Hansen [2005] shows a similar level
of discrepancy in the Case 1 benchmark of B1, at a level of about 6% (reported in Wicht et al. [2009]). For
the Case 1 benchmark, the finite element formulation of Matsui and Okuda [2005] has achieved agreement
at a level of 3.6%, while the so-called “control volume” method of Simkanin and Hejda [2009] achieves an
agreement with the Case 2 benchmark of B1 of better than 6% in all variables; it is again the drift rates
that are the most difficult to retrieve accurately.

The advantage of local methods is in their flexibility to work in non-spherical geometries. The code of
RNG has been used extensively in a cylindrical geometry to study the Von Karman dynamo [Guermond et al.,
2009, 2011]; and the code of Chan et al. [2007] used by ZS has been used to simulate the fluid dynamics
in rotating spheroids (see Zhang et al. [2012] and references to other applications therein). Indeed, Wu
and Roberts [2009] have used a grid-point method to simulate a dynamo in a spheroid that is driven by
precession, and the finite element method has been used by Cébron et al. [2012] to perform MHD simulations
in a triaxial ellipsoid. These applications are clearly the forté of local methods.

To summarise, as we noted in §1, it is particularly gratifying to see that local methods based on both A
and B formulations are able to perform equally well. No account was taken in this exercise of the relative
efficiency of the different codes, in terms of the time taken to solution. This will form a focus of future
efforts that the community will undertake.
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Figure 5: Results of the different codes. (a) uφ at the requested point in the equatorial plane (θ = π/2)
whose r and φ-coordinates are given in §3. For the key to the codes used, see §4. (b) Bθ at the same point.
(c) Temperature T at the same point. (d) Magnetic energy Emag defined by (13). (e) Kinetic energy Ekin

defined by (13). (f) The drift rate ω. No values were contributed by Cébron to (a), (b) or (c), and no value
was given by RNG for (f). For contributer ZS the resolution has been taken to be 61/3 times the number of
radial nodes, in agreement with Chan et al. [2007].
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J.-L. Guermond, R. Laguerre, J. Léorat, and C. Nore. An interior penalty galerkin method for the mhd
equations in heterogeneous domains. Journal of Computational Physics, 221(1):349 – 369, 2007. ISSN
0021-9991. doi: 10.1016/j.jcp.2006.06.045. URL http://www.sciencedirect.com/science/article/
pii/S0021999106002944.

15

http://www.mcs.anl.gov/petsc
http://www.tandfonline.com/doi/abs/10.1080/03091929.2011.641961
http://www.tandfonline.com/doi/abs/10.1080/03091929.2011.641961
http://www.sciencedirect.com/science/article/pii/S0031920107000945
http://www.sciencedirect.com/science/article/pii/S0031920107000945
http://www.sciencedirect.com/science/article/pii/S0031920108002707
http://www.sciencedirect.com/science/article/pii/0031920195030493
http://www.sciencedirect.com/science/article/pii/0031920195030493
http://www.sciencedirect.com/science/article/pii/S0021999106002944
http://www.sciencedirect.com/science/article/pii/S0021999106002944
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