104 research outputs found

    Pattern of degeneration of the rat inferior olivary complex after the early postnatal axotomy of the olivocerebellar projection

    Get PDF
    Neuronal death of inferior olivary neurons after early axotomy of the olivocerebellar tract was studied in newborn (Pl) hemicerebellectomized rats during the first six days after lesion. The degeneration of the inferior olive showed a topographic pattem from one (P2) to six days after axotomy (P7), after which this complex had almost completely disappeared. The first degenerative changes were observed in the principal olive (P2), while the media1 accessory olive was the later-degenerated area (P5). The analysis of these degenerative changes provides a reference for future experimental studies. Furthermore, the topographic study of the degenerative process demonstrated that: i) the most vulnerable neurons were dorsolaterally located, whereas the most resistant ones occupied the media1 aspect of the inferior olivary complex, ii) the comparison between the topographical arrangement of the inferior olivary neurons according to their birth dates, and the rate of degenerative changes observed after hemicerebellectomy, open the possibility that the neurona1 generation date and the response to the axotomy of the inferior olivary neurons could be related

    DD04107-Derived neuronal exocytosis inhibitor peptides: Evidences for synaptotagmin-1 as a putative target

    Get PDF
    The analgesic peptide DD04107 (Pal-EEMQRR-NH2) and its acetylated analogue inhibit a-calcitonin gene-related peptide (a-CGRP) exocytotic release from primary sensory neurons. Examining the crystal structure of the SNARE-Synaptotagmin-1(Syt1) complex, we hypothesized that these peptides could inhibit neuronal exocytosis by binding to Syt1, hampering at least partially its interaction with the SNARE complex. To address this hypothesis, we first interrogate the role of individual side-chains on the inhibition of a-CGRP release, finding that E1, M3, Q4 and R6 residues were crucial for activity. CD and NMR conformational analysis showed that linear peptides have tendency to adopt a-helical conformations, but the results with cyclic analogues indicated that this secondary structure is not needed for activity. Isothermal titration calorimetry (ITC) measurements demonstrate a direct interaction of some of these peptides with Syt1-C2B domain, but not with Syt7-C2B region, indicating selectivity. As expected for a compound able to inhibit a-CGRP release, cyclic peptide derivative Pal-E-cyclo[EMQK]R-NH2 showed potent in vivo analgesic activity, in a model of inflammatory pain. Molecular dynamics simulations provided a model consistent with KD values for the interaction of peptides with Syt1-C2B domain, and with their biological activity. Altogether, these results identify Syt1 as a potential new analgesic target. © 202

    Banbuaren karakterizazio mekanikoa eta kimikoa

    Get PDF
    The bamboo, a tubular geometry plant, it is a promising replacement for traditional synthetic materials in the construction sector. In addition, it is renewable and environmentally sustainable. However, in order to promote its use, mechanical and chemical properties of bamboo must be known. This work analyses chemical and mechanical characteristics of three bamboo species not used in the construction sector, but widely used for other purposes: Dendrocalamus strictus (DS), Arundinaria amabilis (AA) and Phyllostachys aurea (PA). TAPPI standards have been used for the chemical analysis, while mechanical properties have been studied in compression and three-point flexion tests. The results have shown that the density of bamboo has a direct influence on mechanical properties, both in resistance and stiffness: for the analysed three bam-boo species, the higher density the higher resistance and stiffness.; Banbua, geometria tubularra duen landarea den aldetik, hautagai interesgarria da eraikuntzaren sektorerako material sintetiko tradizionalen ordezko gisa erabiltzeko. Gainera, iraunkorra eta berriztagarria da ingurumenarekiko arretari dagokionez. Hala ere, haren erabilera sustatzeko, beharrezkoa da dituen propietate mekanikoak eta kimikoak ezagutzea. Lan honek kimikaren eta mekanikaren ikuspegitik aztertzen ditu gaur egun eraikuntzan ezezagunak diren baina tradizionalki oso erabiliak izan diren hiru banbu-espezie: Dendrocalamus strictus (DS), Arundinaria amabilis (AA) eta Phyllostachys aurea (PA). Azterketa kimikorako TAPPI arauak erabili dira, eta ezaugarri mekanikoak konpresioan eta dinamometroa baliatuz makurdura hiru puntutan neurtuta aztertu dira. Propietate mekanikoen emaitzek erakutsi dute banbuaren dentsitateak eragin zuzena duela bai erresistentzian eta bai zurruntasunean. Aztertutako hiru banbu espezieetan, dentsitatea zenbat eta handiagoa izan, erresistentzia eta zurruntasuna handiagoak direla ikusi da

    Leaf-level photosynthetic capacity in lowland Amazonian and high elevation, Andean tropical moist forests of Peru

    Get PDF
    We examined whether variations in photosynthetic capacity are linked to variations in theenvironment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/west-ern Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax),and the maximum rate of electron transport (Jmax)), leaf mass, nitrogen (N) and phosphorus(P) per unit leaf area (Ma,Naand Pa, respectively), and chlorophyll from 210 species at 18field sites along a 3300-m elevation gradient. Western blots were used to quantify the abun-dance of the CO₂-fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than low-land TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa, the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a smallsubset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosyntheticcapacity of TMFs, with variations in N allocation and Rubisco activation state further influenc-ing photosynthetic rates and N-use efficiency of these critically important forests

    Effect of alloy treatment and coiling temperature on microstructure and bending performance of ultra-high strength strip steel

    Get PDF
    Two different high strength B-containing microalloyed steel strips produced in industrial processing conditions, one treated with Ti and the other treated with Al, processed by controlled rolling, accelerated cooling and coiling in two different temperatures ranges [723 K to 733 K (450 °C to 460 °C)] and [633 K to 653 K (360 °C to 380 °C)] were subjected to bend testing. The Ti treated steel coiled at the higher temperature 733 K (460 °C) showed the best bending performance. The relatively softer (tensile strength of and even {112} in the sub-surface region as well as uniformity of through thickness texture of the rolled sheet improve the bendability. In the presence of crack initiators, like coarse and brittle TiN particles found in the Ti treated steel, a harder microstructure and the presence of Cube and Goss texture in the sub-surface layer, seen for the lower coiling temperature can cause local transgranular cleavage cracking. Finally the post-uniform elongation obtained from tensile testing and bendability follow a good correlation

    Indole is an essential herbivore-induced volatile priming signal in maize

    Get PDF
    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks

    DD04107-Derived neuronal exocytosis inhibitor peptides: Evidences for synaptotagmin-1 as a putative target

    Get PDF
    15 pags, 8 figs, 3 tabs. -- Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2021.105231.The analgesic peptide DD04107 (Pal-EEMQRR-NH2) and its acetylated analogue inhibit α-calcitonin gene-related peptide (α-CGRP) exocytotic release from primary sensory neurons. Examining the crystal structure of the SNARE-Synaptotagmin-1(Syt1) complex, we hypothesized that these peptides could inhibit neuronal exocytosis by binding to Syt1, hampering at least partially its interaction with the SNARE complex. To address this hypothesis, we first interrogate the role of individual side-chains on the inhibition of α-CGRP release, finding that E1, M3, Q4 and R6 residues were crucial for activity. CD and NMR conformational analysis showed that linear peptides have tendency to adopt α-helical conformations, but the results with cyclic analogues indicated that this secondary structure is not needed for activity. Isothermal titration calorimetry (ITC) measurements demonstrate a direct interaction of some of these peptides with Syt1-C2B domain, but not with Syt7-C2B region, indicating selectivity. As expected for a compound able to inhibit α-CGRP release, cyclic peptide derivative Pal-E-cyclo[EMQK]R-NH2 showed potent in vivo analgesic activity, in a model of inflammatory pain. Molecular dynamics simulations provided a model consistent with KD values for the interaction of peptides with Syt1-C2B domain, and with their biological activity. Altogether, these results identify Syt1 as a potential new analgesic target.This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO-FEDER), RTI2018-097189-C2 and CTQ2017-84371-P), and the Spanish National Research Council (CSIC, 201880E109, 201980E030). The NMR experiments were performed in the “Manuel Rico” NMR laboratory, LMR, CSIC, a node of the Spanish Large-Scale National Facility ICTS R-LRB. We thank Prof. Josep Rizo and R. Voleti (Dept. Biophysics, Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, USA) for providing the clones required for expressing Syt1 and Syt7 proteins. SG-R and AB belong to the Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).Peer reviewe
    corecore