12 research outputs found

    Modelling adaptive management of intercropping in vineyards to satisfy agronomic and environmental performances under Mediterranean climate

    No full text
    In the Mediterranean area, rainfed viticulture is exposed to irregular rainfall distribution. The impacts on production and environment can be mitigated by appropriate management practices like, for instance, the introduction of cover crop in the inter-rows in vineyards. This paper presents the VERDI simulation model created to study various adaptive intercrop management strategies at field scale. The purpose is to design management strategies that are responsive to the water status of the biophysical system (soil - grapevine - intercrop) and the past and current climatic conditions. VERDI realistically reproduces the dynamic interactions between the biophysical system and the decision system in varying Mediterranean rain regime. The decision system works as an interpreter of a management strategy, defined as a set of soil surface management activities (e.g. mechanical weeding of the intercrop) that are linked by temporal constraints (e.g. sequencing, synchronisation) and organisational or programmatic specifications (e.g. iteration). The adaptive capabilities of the strategies are distinguished according to the different sources of flexibility to be exploited at operational, tactical, and strategic levels. A simulation study is reported that involves more or less flexible strategies under different climate scenarios. The simulation results proved that, in case of severe drought, the most flexible strategy yields the best trade-off between agricultural production and environmental services over the years

    Captages d&8217;eau potable : accompagner les transitions dans les territoires agricoles

    No full text
    La réduction des risques de contamination des eaux de surface et souterraines par les herbicides est un enjeu important en région viticole méditerranéenne du fait de risques élevés liés à l'importance des écoulements de surface et aux usages d'herbicides. L'article présente une méthodologie d'évaluation par modélisation de stratégies d'entretien du sol choisies par un groupe d'experts pour réduire le ruissellement polluant par herbicides tout en préservant la production. La méthodologie est basée sur une chaîne de modèles permettant de simuler dans différents contextes climatiques, les itinéraires techniques d'entretien du sol, les dynamiques d'états de surface du sol, les flux de ruissellement polluant, les stress hydrique et azoté subis par la vigne et leurs impacts sur les rendements en raisin. Les résultats, discutés au regard des logiques d'action des viticulteurs du site étudié, le bassin du Rieurtord dans l'Hérault, montrent que la réduction d'usage d'herbicides est indispensable pour la réduction de la contamination des eaux, mais que les stratégies doivent comporter une certaine flexibilité d'application en fonction des années et des sols pour satisfaire les objectifs de production. Ils indiquent toutefois qu'à terme l'abandon total des herbicides est à rechercher pour garantir la qualité des masses d'eau issues du ruissellement

    Adapting Landscape Mosaics of medIteranean Rainfed Agrosystems for a sustainable management of crop production, water and soil resources: the ALMIRA project

    No full text
    International audienceWater erosion of cultivated soils is a threat to the sustainability of agriculture, especially in Mediterranean areas. For a long time, Mediterranean farmers have thus adopted some soil conservation practices. Actual ditch networks, which are generally associated with terraces, result from historical successive farmer settlements and are one of these soil conservation practices. By intercepting surface run-off, ditches decrease slope length and prevent soil erosion on downstream plots. However, since water erosion hazard and ditch network geometries are highly variable in vineyards landscape and since ditch building and maintaining are costly, the objective of this study was to identify and map the resulting efficiency of ditch networks in preventing soil erosion. For a given area, a ditch network efficiency is defined here as the balance between the network density, i.e. network cumulated length for a given area unit, and the erosion sensitivity over an area which measures the performance of the ditch network in limiting soil erosion. The erosion efficiency of ditch networks was thus identified using both i) computer generated ditch networks with various spatial configurations and ii) the stream power index as an erosion sensitivity indicator, computed from a DTM in which each ditch network was burned. The stream power index of the actual networks were compared with a set of generated networks whose density and topology were selected to maximize the performance in preventing soil erosion thanks to the use of a self-developed optimized stochastic network generator. For four 1 km2 hillslopes, we showed that the performances of actual networks to prevent soil erosion was among the best that were obtained by simulated networks with even greater densities. Furthermore, we showed that the stream power index values that accounted for the actual ditch networks to prevent soil erosion hazard was both minimal and weakly variable in the whole study area (30 km2 ) at hillslope scale, whatever the other erosion factors, namely topography and landuse. This suggested that densities and topologies of actual ditch networks in the catchment have been optimized by farmers through individual acts along the last centuries in order to limit the soil erosion hazard. This also confirms there is very little room to propose new ditch network spatial configurations that better prevent vineyards soil erosion

    Adapting Landscape Mosaics of medIteranean Rainfed Agrosystems for a sustainable management of crop production, water and soil resources: the ALMIRA project

    No full text
    International audienceWater erosion of cultivated soils is a threat to the sustainability of agriculture, especially in Mediterranean areas. For a long time, Mediterranean farmers have thus adopted some soil conservation practices. Actual ditch networks, which are generally associated with terraces, result from historical successive farmer settlements and are one of these soil conservation practices. By intercepting surface run-off, ditches decrease slope length and prevent soil erosion on downstream plots. However, since water erosion hazard and ditch network geometries are highly variable in vineyards landscape and since ditch building and maintaining are costly, the objective of this study was to identify and map the resulting efficiency of ditch networks in preventing soil erosion. For a given area, a ditch network efficiency is defined here as the balance between the network density, i.e. network cumulated length for a given area unit, and the erosion sensitivity over an area which measures the performance of the ditch network in limiting soil erosion. The erosion efficiency of ditch networks was thus identified using both i) computer generated ditch networks with various spatial configurations and ii) the stream power index as an erosion sensitivity indicator, computed from a DTM in which each ditch network was burned. The stream power index of the actual networks were compared with a set of generated networks whose density and topology were selected to maximize the performance in preventing soil erosion thanks to the use of a self-developed optimized stochastic network generator. For four 1 km2 hillslopes, we showed that the performances of actual networks to prevent soil erosion was among the best that were obtained by simulated networks with even greater densities. Furthermore, we showed that the stream power index values that accounted for the actual ditch networks to prevent soil erosion hazard was both minimal and weakly variable in the whole study area (30 km2 ) at hillslope scale, whatever the other erosion factors, namely topography and landuse. This suggested that densities and topologies of actual ditch networks in the catchment have been optimized by farmers through individual acts along the last centuries in order to limit the soil erosion hazard. This also confirms there is very little room to propose new ditch network spatial configurations that better prevent vineyards soil erosion

    OMERE: A Long-Term Observatory of Soil and Water Resources, in Interaction with Agricultural and Land Management in Mediterranean Hilly Catchments

    No full text
    To account for the diversity of agricultural and ecosystem situations in hilly Mediterranean areas, the agro-hydrological observatory OMERE (Observatoire Méditerranéen de l’Environnement Rural et de l’Eau) monitors two farmed catchments—one in northern Tunisia and the other in southern France. Mediterranean regions are typified by a highly variable climate, with an alternation of long droughts and intense storms, and by a strong heterogeneity of soil properties, due to a combination of climate, relief, parent materials, sparse vegetation, intense land use, man-made infrastructure (ditches, terraces, etc.), and agricultural activities. In this context, OMERE aims to document the impacts of agricultural and land management on mass fluxes in Mediterranean farmed headwater catchments. The observation strategy is motivated by monitoring water, sediment, and contaminant fluxes and hydrologic and climatic variables at different spatial scales from cultivated plots and landscape elements to the catchment scale. These measurements have been performed at a fine time resolution over a long-term scale and by surveying land use, agricultural practices, and soil surface characteristics. The long-term observation strategy intends to support integrative multidisciplinary research for elucidating the conditions that improve soil and water management and delivery of ecosystem services in a Mediterranean rainfed cultivated context. The observatory has led to scientific insights regarding three scientific objectives: (i) to better understand the fluxes of water, erosion, and contaminants, especially pesticides, and of their natural and anthropogenic drivers on short- and long-term scales; (ii) to analyze the aggregate effects of farming and land management on mass fluxes across scales, from plot to catchment or landscape scales; and (iii) to derive new scenarios for sustainable agricultural management and improved delivery of ecosystem services
    corecore