166 research outputs found

    Duration of heart failure and the risk of atrial fibrillation: different mechanisms at different times?

    Get PDF
    Chronic heart failure increases the risk of atrial fibrillation (AF), with the prevalence of AF paralleling the severity of heart failure.1 Factors that underlie this increased susceptibility to AF may include electrical, structural, and neurohumoral changes.2 In AF, it is recognized that atrial electrophysiological remodelling occurs and contributes to the perpetuation of the arrhythmia, most notably the decrease of effective refractory period (ERP) which predisposes to re-entry by shortening the wavelength. Does heart failure cause similar changes in atrial electrophysiology that predispose to the arrhythmia

    Silica-Coated Magnetic Nanoparticles for Vancomycin Conjugation

    Get PDF
    Drug resistance is a global health challenge with thousands of deaths annually caused by bacterial multidrug resistance (MDR). Efforts to develop new antibacterial molecules do not meet the mounting needs imposed by the evolution of MDR. An alternative approach to overcome this challenge is developing targeted formulations that can enhance the therapeutic efficiency and limit side effects. In this aspect, vancomycin is a potent antibacterial agent that has inherent bacterial targeting properties by binding to the D-Ala-D-Ala moiety of the bacterial peptidoglycan. However, the use of vancomycin is associated with serious side effects that limit its clinical use. Herein, we report the development of vancomycin-conjugated magnetic nanoparticles using a simple conjugation method for targeted antibacterial activity. The nanoparticles were synthesized using a multistep process that starts by coating the nanoparticles with a silica layer, followed by binding an amide linker and then binding the vancomycin glycopeptide. The developed vancomycin-conjugated magnetic nanoparticles were observed to exhibit a spherical morphology and a particle size of 16.3 ± 2.6 nm, with a silica coating thickness of 5 nm and a total coating thickness of 8 nm. The vancomycin conjugation efficiency on the nanoparticles was measured spectrophotometrically to be 25.1%. Additionally, the developed formulation retained the magnetic activity of the nanoparticles, where it showed a saturation magnetization value of 51 emu/g, compared to 60 emu/g for bare magnetic nanoparticles. The in vitro cell biocompatibility demonstrated improved safety where vancomycin-conjugated nanoparticles showed IC50 of 183.43 μg/mL, compared to a much lower value of 54.11 μg/mL for free vancomycin. While the antibacterial studies showed a comparable activity of the developed formulation, the minimum inhibitory concentration was 25 μg/mL, compared to 20 μg/mL for free vancomycin. Accordingly, the reported formulation can be used as a platform for the targeted and efficient delivery of other drugs

    Hydroxy-Selenomethionine, an Organic Selenium Source, Increases Selenoprotein Expression and Positively Modulates the Inflammatory Response of LPS-Stimulated Macrophages

    Full text link
    The role of 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet), a form of organic selenium (Se), in selenoprotein synthesis and inflammatory response of THP1-derived macrophages stimulated with lipopolysaccharide (LPS) has been investigated. Glutathione peroxidase (GPX) activity, GPX1 gene expression, selenoprotein P (SELENOP) protein and gene expression, and reactive oxygen species (ROS) production were studied in Se-deprived conditions (6 and 24 h). Then, macrophages were supplemented with OH-SeMet for 72 h and GPX1 and SELENOP gene expression were determined. The protective effect of OH-SeMet against oxidative stress was studied in H2O2-stimulated macrophages, as well as the effect on GPX1 gene expression, oxidative stress, cytokine production (TNFα, IL-1β and IL-10), and phagocytic and killing capacities after LPS stimulation. Se deprivation induced a reduction in GPX activity, GPX1 gene expression, and SELENOP protein and gene expression at 24 h. OH-SeMet upregulated GPX1 and SELENOP gene expression and decreased ROS production after H2O2 treatment. In LPS-stimulated macrophages, OH-SeMet upregulated GPX1 gene expression, enhanced phagocytic and killing capacities, and reduced ROS and cytokine production. Therefore, OH-SeMet supplementation supports selenoprotein expression and controls oxidative burst and cytokine production while enhancing phagocytic and killing capacities, modulating the inflammatory response, and avoiding the potentially toxic insult produced by highly activated macrophages. Keywords: cytokine production; glutathione peroxidase; immune response; macrophage polarization; oxidative stress; phagocytosis; selenium deprivation; selenoprotein P; 2-hydroxy-(4-methylseleno)butanoic aci

    Biological and Health-promoting Activity of Vinification Byproducts Produced in Spanish Vineyards

    Get PDF
    Several by-products are produced in the Spanish agricultural system. Among them, fresh and vinifiedgrape skins represent an abundant source of phenols with a potential nutraceutical value. Fresh grape skinextracts (FGSE) and vinification of grape skin extracts (VGSE) obtained by a microwave-assisted methodhave been chemically and biologically characterised. Their role in the maintenance of genetic stabilitywas stated by in vivo genotoxic and antigenotoxic evaluations (Drosophilla melanogaster wing spot test), aswell as by their potential chemopreventive effect (in an HL60 in vitro model). Total phenolic, anthocyaninand resveratrol contents were chemically characterised in the two extracts, showing some qualitativedifferences. Both extracts and resveratrol were not mutagenic in the Drosophila somatic mutation andrecombination tests, and exerted antigenotoxic activities against hydrogen peroxide. They also showedcytotoxic activity to HL60 leukaemia cells, with an IC50 of 4.5μL/mL, 4.6μL/mL and 98μM respectively andinduced apoptotic internucleosomic fragmentation in the HL60 cell line

    Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Assessment of Substrate for Ventricular Tachycardia With Hemodynamic Compromise.

    Get PDF
    Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials

    Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

    Get PDF
    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities
    corecore