63 research outputs found

    Resonant Rossby waves and solar activity

    Get PDF
    Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem

    Atmospheric planetary waves induced by solar rotation

    Get PDF
    It is known that there are variations in the atmospheric processes with a period close to that of the rotation of the Sun (27 days). The variations are discovered in tropospheric processes, rainfalls, geopotential and in stratosphere. The main theoretical problem is the identification of the physical process by which these heterogeneous solar and meteorological phenomena are connected. Ivanovsky and Krivolutsky proposed that the periodic heating of the ozone layer by the short wave radiation would be the reason of excitation the 27-day oscillations. It was also assumed that excitement takes place in condition of resonance with an excited mode corresponding to the conditions present in the stratospheric circulations. The possibility is discussed of the resonant excitation and presentation is made of the data analysis results which support this idea

    On the relationship between the phases of 27-day total ozone and solar activity indices in different latitudinal zones

    Get PDF
    The dynamics of 27 day total ozone variations during and 11 year solar activity cycle at high and low latitudes was analyzed. The calculations were made using a specially worked out program permitting, besides the determination of the amplitudes and phases, the observation of the coherence of phases in any time interval. To characterize solar activity, solar radio-flux at 10.7 cm was used. The results of the calculation of total ozone phases difference and those of the index F(sub 10.7), as well as the amplitudes of the 27 day variations of these parameters are presented

    Variability of quasi-stationary planetary waves

    Get PDF
    The results of the analysis of nonzonal perturbations (m = 1, 2, 3) of the geopotential field at a 30 mb level are presented. A long period modulation of the harmonics' amplitude is discovered. Calculations of eigenfunctions and eigennumbers of the Laplace tidal equation are carried out for a real latitudinal wind profile. The observed first zonal harmonic in different years is caused by the same mode. Thus, the difference in the wave amplitudes could not be accounted for by the difference in stratospheric zonal circulation in different years and should be related to tropospheric processes

    Влияние космической погоды на земную атмосферу

    Get PDF
    The review generalizes experimental data on the relationships between the solar activity agents (space weather) and atmosphere constituents. It is shown that high-energy solar protons (SPE) make a powerful impact on photo-chemical processes in the polar areas and, correspondingly, on atmospheric circulation and planetary cloudiness. Variations of the solar UV irradiance modulate the descent rate of the zonal wind in the equatorial stratosphere in the course of quasi-biennial oscillation (QBO), and thus control the total duration (period) of the QBO cycle and, correspondingly, the seasonal ozone depletion in the Antarctic. The geo-effective solar wind impacts on the atmospheric wind system in the entire Southern Polar region, and influences the dynamics of the Southern Oscillation (ENSO).В обзоре обобщены экспериментальные данные о влиянии космической погоды на земную атмосферу. Показано, что высокоэнергичные солнечные протоны (SPE) оказывают мощное воздействие на фотохимические процессы в полярных областях и, соответственно, на атмосферную циркуляцию и планетарную облачность. Вариации солнечного УФ-излучения моделируют скорость спуска зональных ветров в экваториальной стратосфере в ходе квазидвухлетней осцилляции (QBO) и контролируют, таким образом, общую продолжительность (период) QBO цикла и, соответственно, вариации общего содержания озона в Антарктике. Геоэффективный солнечный ветер воздействует на систему катабатических ветров во всей южной полярной области и влияет на динамику южной осцилляции (ENSO)

    An oribatid mite (Arachnida: Acari) from the Oxford Clay (Jurassic: Upper Callovian) of South Cave Station Quarry, Yorkshire, UK

    Get PDF
    A single specimen of a new species of oribatid mite belonging to the genus Jureremus Krivolutsky, in Krivolutsky and Krassilov 1977, previously described from the Upper Jurassic of the Russian Far East, is described as J. phippsi sp. nov. The mite is preserved by iron pyrite replacement, and was recovered by sieving from the Oxford Clay Formation (Jurassic: Upper Callovian) of South Cave, Yorkshire. It is the first record of a pre-Pleistocene mite, and the second species record of the family Cymbaeremaeidae, from the British Isles; also, it is only the third record of Acari from the Jurassic Period. The presence of a terrestrial mite in a sedimentary sequence of open marine origin is noteworthy, and suggestions for its mode of transport to the site of deposition are discussed

    Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds

    Full text link
    Inferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/1/evo13309-sup-0003-figureS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/2/evo13309.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/3/evo13309-sup-0006-figureS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/4/evo13309_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/5/evo13309-sup-0009-figureS9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/6/evo13309-sup-0005-figureS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/7/evo13309-sup-0004-figureS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/8/evo13309-sup-0002-figureS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/9/evo13309-sup-0008-figureS8.pd

    Composition changes after the "Halloween" solar proton event : the high-energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study

    Get PDF
    We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the “Halloween” solar proton event (SPE) in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N) and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM) and Bremen 3-D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, Fin- ROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated NOy enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models’ atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The analysis of chlorine species perturbations has shown that the encountered differences between models and observations, particularly the underestimation of observed ClONO2 enhancements, are related to a smaller availability of ClO in the polar night region already before the SPE. In general, the intercomparison has demonstrated that differences in the meteorology and/or initial state of the atmosphere in the simulations cause a relevant variability of the model results, even on a short timescale of only a few days

    Solar Signals in CMIP-5 Simulations: The Ozone Response

    Get PDF
    A multiple linear regression statistical method is applied to model data taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5) to estimate the 11-yr solar cycle responses of stratospheric ozone, temperature, and zonal wind during the 1979-2005 period. The analysis is limited to the six CMIP-5 models that resolve the stratosphere (high-top models) and that include interactive ozone chemistry. All simulations assumed a conservative 11-yr solar spectral irradiance (SSI) variation based on the NRL model. These model responses are then compared to corresponding observational estimates derived from two independent satellite ozone profile data sets and from ERA Interim Reanalysis meteorological data. The models exhibit a range of 11-yr responses with three models (CESM1-WACCM, MIROC-ESM-CHEM, and MRI-ESM1) yielding substantial solar-induced ozone changes in the upper stratosphere that compare favorably with available observations. The remaining three models do not, apparently because of differences in the details of their radiation and photolysis rate codes. During winter in both hemispheres, the three models with stronger upper stratospheric ozone responses produce relatively strong latitudinal gradients of ozone and temperature in the upper stratosphere that are associated with accelerations of the polar night jet under solar maximum conditions. This behavior is similar to that found in the satellite ozone and ERA Interim data except that the latitudinal gradients tend to occur at somewhat higher latitudes in the models. The sharp ozone gradients are dynamical in origin and assist in radiatively enhancing the temperature gradients, leading to a stronger zonal wind response. These results suggest that simulation of a realistic solar-induced variation of upper stratospheric ozone, temperature and zonal wind in winter is possible for at least some coupled climate models even if a conservative SSI variation is adopted
    corecore