1,296 research outputs found

    Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV

    Full text link
    Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.Comment: published versio

    A practical case of the multiobjective knapsack problem: Design, modelling, tests and analysis

    Get PDF
    In this paper, we present a practical case of the multiobjective knapsack problem which concerns the elaboration of the optimal action plan in the social and medico-social sector. We provide a description and a formal model of the problem as well as some preliminary computational results. We perform an empirical analysis of the behavior of three metaheuristic approaches: a fast and elitist multiobjective genetic algorithm (NSGA-II), a Pareto Local Search (PLS) algorithm and an Indicator-Based Multi-Objective Local Search (IBMOLS)

    An Algebraic Approach for Decoding Spread Codes

    Full text link
    In this paper we study spread codes: a family of constant-dimension codes for random linear network coding. In other words, the codewords are full-rank matrices of size (k x n) with entries in a finite field F_q. Spread codes are a family of optimal codes with maximal minimum distance. We give a minimum-distance decoding algorithm which requires O((n-k)k^3) operations over an extension field F_{q^k}. Our algorithm is more efficient than the previous ones in the literature, when the dimension k of the codewords is small with respect to n. The decoding algorithm takes advantage of the algebraic structure of the code, and it uses original results on minors of a matrix and on the factorization of polynomials over finite fields

    Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229

    Full text link
    In-source resonance ionization spectroscopy was used to identify an efficient and selective three step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in preparation of laser spectroscopic investigations for an identification of the low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground state. Using a sample of Th-232, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing states were identified. Level energies were determined with an accuracy of 0.06 cm-1 for intermediate and 0.15 cm-1 for auto-ionizing states. Using different excitation pathways an assignment of total angular momenta for several energy levels was possible. One particularly efficient ionization scheme of thorium, exhibiting saturation in all three optical transitions, was studied in detail. For all three levels in this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230 relative to Th-232 were measured. An overall efficiency including ionization, transport and detection of 0.6 was determined, which was predominantly limited by the transmission of the mass spectrometer ion optics

    Improved radiative corrections and proton charge form factor from the Rosenbluth separation technique

    Full text link
    We investigate whether the apparent discrepancy between proton electric form factor from measurements using the Rosenbluth separation technique and polarization transfer method is due to the standard approximations employed in radiative correction procedures. Inaccuracies due to both the peaking approximation and the soft-photon approximation have been removed in our simulation approach. In contrast to results from (e,e'p) experiments, we find them in this case to be too small to explain the discrepancy.Comment: 6 pages, 3 figure

    Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence

    Get PDF
    Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the EarthÂŽs atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75ℏ\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
    • 

    corecore