2,558 research outputs found

    Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties

    Get PDF
    Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Simulating Star Formation and Feedback in Galactic Disk Models

    Full text link
    We use a high-resolution grid-based hydrodynamics method to simulate the multi-phase interstellar medium in a Milky Way-size quiescent disk galaxy. The models are global and three-dimensional, and include a treatment of star formation and feedback. We examine the formation of gravitational instabilities and show that a form of the Toomre instability criterion can successfully predict where star formation will occur. Two common prescriptions for star formation are investigated. The first is based on cosmological simulations and has a relatively low threshold for star formation, but also enforces a comparatively low efficiency. The second only permits star formation above a number density of 1000 cm^-3 but adopts a high efficiency. We show that both methods can reproduce the observed slope of the relationship between star formation and gas surface density (although at too high a rate for our adopted parameters). A run which includes feedback from type II supernovae is successful at driving gas out of the plane, most of which falls back onto the disk. This feedback also substantially reduces the star formation rate. Finally, we examine the density and pressure distribution of the ISM, and show that there is a rough pressure equilibrium in the disk, but with a wide range of pressures at a given location (and even wider for the case including feedbackComment: 14 pages, 12 figures, accepted to Astrophysical Journa

    Dense Cloud Formation and Star Formation in a Barred Galaxy

    Get PDF
    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2Mass data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr an isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than 104M10^4M_{\odot} (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the identified clump's internal motion with the clump size is similar to that observed in the molecular clouds of our Galaxy. We find that the virial parameters for clumps in the bar region are larger than that in the spiral arm region. From our numerical results, we estimate star formation in the bar and spiral arm regions by applying the simple model of Krumholtz and McKee (2005). The mean relation between star formation rate and gas surface density agrees well with the observed Kennicutt-Schmidt relation. The SFE in the bar region is 60\sim 60 % of the spiral arm region. This trend is consistent with observations of barred galaxies.Comment: 9 pages, 16 figures. Accepted for publication in the MNRA

    Investigating Atomic Details of the CaF2_2(111) Surface with a qPlus Sensor

    Get PDF
    The (111) surface of CaF2_2 has been intensively studied with large-amplitude frequency-modulation atomic force microscopy and atomic contrast formation is now well understood. It has been shown that the apparent contrast patterns obtained with a polar tip strongly depend on the tip terminating ion and three sub-lattices of anions and cations can be imaged. Here, we study the details of atomic contrast formation on CaF2_2(111) with small-amplitude force microscopy utilizing the qPlus sensor that has been shown to provide utmost resolution at high scanning stability. Step edges resulting from cleaving crystals in-situ in the ultra-high vacuum appear as very sharp structures and on flat terraces, the atomic corrugation is seen in high clarity even for large area scans. The atomic structure is also not lost when scanning across triple layer step edges. High resolution scans of small surface areas yield contrast features of anion- and cation sub-lattices with unprecedented resolution. These contrast patterns are related to previously reported theoretical results.Comment: 18 pages, 9 Figures, presented at 7th Int Conf Noncontact AFM Seattle, USA Sep 12-15 2004, accepted for publication in Nanotechnology, http://www.iop.or

    Protective Immunity against Infection with <i>Mycoplasma haemofelis</i>

    Get PDF
    Hemoplasmas are potentially zoonotic mycoplasmal pathogens, which are not consistently cleared by antibiotic therapy. Mycoplasma haemofelis is the most pathogenic feline hemoplasma species. The aim of this study was to determine how cats previously infected with M. haemofelis that had recovered reacted when rechallenged with M. haemofelis and to characterize the immune response following de novo M. haemofelis infection and rechallenge. Five specific-pathogen-free (SPF)-derived naive cats (group A) and five cats that had recovered from M. haemofelis infection (group B) were inoculated subcutaneously with M. haemofelis. Blood M. haemofelis loads were measured by quantitative PCR (qPCR), antibody response to heat shock protein 70 (DnaK) by enzyme-linked immunosorbent assay (ELISA), blood lymphocyte cell subtypes by flow cytometry, and cytokine mRNA levels by quantitative reverse transcriptase PCR. Group A cats all became infected with high bacterial loads and seroconverted, while group B cats were protected from reinfection, thus providing the unique opportunity to study the immunological parameters associated with this protective immune response against M. haemofelis. First, a strong humoral response to DnaK was only observed in group A, demonstrating that an antibody response to DnaK is not important for protective immunity. Second, proinflammatory cytokine interleukin-6 (IL-6) mRNA levels appeared to increase rapidly postinoculation in group B, indicating a possible role in protective immunity. Third, an increase in IL-12p35 and -p40 mRNA and decrease in the Th2/Th1 ratio observed in group A suggest that a Th1-type response is important in primary infection. This is the first study to demonstrate protective immunity against M. haemofelis reinfection, and it provides important information for potential future hemoplasma vaccine design

    Giant Molecular clouds: what are they made from, and how do they get there?

    Full text link
    We analyse the results of four simulations of isolated galaxies: two with a rigid spiral potential of fixed pattern speed, but with different degrees of star-formation induced feedback, one with an axisymmetric galactic potential and one with a `live' self-gravitating stellar component. Since we use a Lagrangian method we are able to select gas that lies within giant molecular clouds (GMCs) at a particular timeframe, and to then study the properties of this gas at earlier and later times. We find that gas which forms GMCs is not typical of the interstellar medium at least 50 Myr before the clouds form and reaches mean densities within an order of magnitude of mean cloud densities by around 10 Myr before. The gas in GMCs takes at least 50 Myr to return to typical ISM gas after dispersal by stellar feedback, and in some cases the gas is never fully recycled. We also present a study of the two-dimensional, vertically-averaged velocity fields within the ISM. We show that the velocity fields corresponding to the shortest timescales (that is, those timescales closest to the immediate formation and dissipation of the clouds) can be readily understood in terms of the various cloud formation and dissipation mechanisms. Properties of the flow patterns can be used to distinguish the processes which drive converging flows (e.g.\ spiral shocks, supernovae) and thus molecular cloud formation, and we note that such properties may be detectable with future observations of nearby galaxies.Comment: 13 pages, 8 figures, accepted for publication in MNRA

    Contrast Mechanisms for the Detection of Ferroelectric Domains with Scanning Force Microscopy

    Full text link
    We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all faces of bulk single crystals using scanning force microscopy exemplified on hexagonally poled lithium niobate. The domain contrast can be attributed to three different mechanisms: i) the thickness change of the sample due to an out-of-plane piezoelectric response (standard piezoresponse force microscopy), ii) the lateral displacement of the sample surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample interaction at the domain boundaries caused by surface charges on the crystallographic y- and z-faces. A careful analysis of the movement of the cantilever with respect to its orientation relative to the crystallographic axes of the sample allows a clear attribution of the observed domain contrast to the driving forces respectively.Comment: 8 pages, 8 figure

    Ditopic receptors containing urea groups for solvent extraction of Cu(II) salts

    Get PDF
    [Abstract] The ditopic receptor L3 [1-(2-((7-(4-(tert-butyl)benzyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)phenyl)-3-(3-nitrophenyl)urea] containing a macrocyclic cyclen unit for Cu(II)-coordination and a urea moiety for anion binding was designed for recognition of metal salts. The X-ray structure of [CuL3(SO4)] shows that the sulfate anion is involved in cooperative binding via coordination to the metal ion and hydrogen-bonding to the urea unit. This behaviour is similar to that observed for the related receptor L1 [1-(2-((bis(pyridin-2-ylmethyl)amino)methyl)phenyl)-3-(3-nitrophenyl)urea], which forms a dimeric [CuL1(μ-SO4)]2 structure in the solid state. In contrast, the single crystal X-ray structure of [ZnL3(NO3)2] contains a 1 : 2 complex (metal : anion) where one anion coordinates to the metal and the other is hydrogen-bonded to the urea group. Spectrophotometric titrations performed for the [CuL3(OSMe2)]2+ complex indicate that this system is able to bind a wide range of anions with an affinity sequence: MeCO2− > Cl− > H2PO4− > Br− > NO2− > HSO4− > NO3−. Lipophilic analogues of L1 and L3 extract CuSO4 and CuCl2 from water into chloroform with high selectivity over the corresponding Co(II), Ni(II) and Zn(II) salts.Xunta de Galicia; EM 2012/088Xunta de Galicia; CN-2012/01

    Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    Get PDF
    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line. However, peak electron temperature under RF occurs at high VDS and low IDS where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms
    corecore