30 research outputs found

    A phosphatase cascade by which rewarding stimuli control nucleosomal response

    Get PDF
    ArticleInternational audienceDopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascad

    Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite

    No full text
    Sodium appetite is an instinct that involves avid specific intention. It is elicited by sodium deficiency, stress-evoked adrenocorticotropic hormone (ACTH), and reproduction. Genome-wide microarrays in sodium-deficient mice or after ACTH infusion showed up-regulation of hypothalamic genes, including dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP-32), dopamine receptors-1 and -2, α-2C- adrenoceptor, and striatally enriched protein tyrosine phosphatase (STEP). Both DARPP-32 and neural plasticity regulator activity-regulated cytoskeleton associated protein (ARC) were up-regulated in lateral hypothalamic orexinergic neurons by sodium deficiency. Administration of dopamine D1 (SCH23390) and D2 receptor (raclopride) antagonists reduced gratification of sodium appetite triggered by sodium deficiency. SCH23390 was specific, having no effect on osmotic-induced water drinking, whereas raclopride also reduced water intake. D1 receptor KO mice had normal sodium appetite, indicating compensatory regulation. Appetite was insensitive to SCH23390, confirming the absence of off-target effects. Bilateral microinjection of SCH23390 (100 nM in 200 nL) into rats’ lateral hypothalamus greatly reduced sodium appetite. Gene set enrichment analysis in hypothalami of mice with sodium appetite showed significant enrichment of gene sets previously linked to addiction (opiates and cocaine). This finding of concerted gene regulation was attenuated on gratification with perplexingly rapid kinetics of only 10 min, anteceding significant absorption of salt from the gut. Salt appetite and hedonic liking of salt taste have evolved over >100 million y (e.g., being present in Metatheria). Drugs causing pleasure and addiction are comparatively recent and likely reflect usurping of evolutionary ancient systems with high survival value by the gratification of contemporary hedonic indulgences. Our findings outline a molecular logic for instinctive behavior encoded by the brain with possible important translational–medical implications

    Dual involvement of G-substrate in motor learning revealed by gene deletion

    Get PDF
    In this study, we generated mice lacking the gene for G-substrate, a specific substrate for cGMP-dependent protein kinase uniquely located in cerebellar Purkinje cells, and explored their specific functional deficits. G-substrate–deficient Purkinje cells in slices obtained at postnatal weeks (PWs) 10–15 maintained electrophysiological properties essentially similar to those from WT littermates. Conjunction of parallel fiber stimulation and depolarizing pulses induced long-term depression (LTD) normally. At younger ages, however, LTD attenuated temporarily at PW6 and recovered thereafter. In parallel with LTD, short-term (1 h) adaptation of optokinetic eye movement response (OKR) temporarily diminished at PW6. Young adult G-substrate knockout mice tested at PW12 exhibited no significant differences from their WT littermates in terms of brain structure, general behavior, locomotor behavior on a rotor rod or treadmill, eyeblink conditioning, dynamic characteristics of OKR, or short-term OKR adaptation. One unique change detected was a modest but significant attenuation in the long-term (5 days) adaptation of OKR. The present results support the concept that LTD is causal to short-term adaptation and reveal the dual functional involvement of G-substrate in neuronal mechanisms of the cerebellum for both short-term and long-term adaptation
    corecore