186 research outputs found

    The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Full text link
    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.Comment: Received: 11 November 2017, revision received: 31 January 2018, accepted: 31 January 201

    Service Learning in Overseas Nations: U.S. Student Teachers Give, Grow, and Gain Outside the Classroom

    Get PDF
    Service learning and overseas student teaching are receiving increased attention in education literature. For example, Kielsmeier (1993) touts service learning as an emerging educational improvement strategy (p. 5) in the U.S. school reform movement. Learning activities, by combining classroom work with service/social action projects, ... can help produce dramatic improvements in student attitudes, motivation, and achievement (Nathan & Kielsmeier, 1991, p. 739)

    The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields: Part I. Techniques and tests of the methods

    Get PDF
    In this study, we independently test the presence of an exoplanet around the binary KIC 9472174, which is composed of a red dwarf and a pulsating type B subdwarf. We also present the results of our search for Jupiter-mass objects orbiting near to the eclipsing binary KIC 7975824, which is composed of a white dwarf and type B subdwarf, and the pulsating white dwarf KIC 8626021. The goal is to test analytical techniques and prepare the ground for a larger search for possible substellar survivors on tight orbits around post-common envelope binaries and stars at the end of their evolution, that is, extended horizontal branch stars and white dwarfs. We, therefore, mainly focus on substellar bodies orbiting these stars within the range of the host's former red-giant or asymptotic-giant phase envelopes. Due to the methods we use, the quest is restricted to single-pulsating type B subdwarf and white dwarf stars and short-period eclipsing binaries containing a white dwarf or a subdwarf component. Results. Based on the three objects studied in this paper, we demonstrate that these methods can be used to detect giant exoplanets orbiting around pulsating white dwarf or type B subdwarf stars as well as short-period binary systems, at distances which fall within the range of the former red-giant envelope of a single star or the common envelope of a binary. Using our analysis techniques, we reject the existence of a Jupiter-mass exoplanet around the binary KIC 9472174 at the distance and orbital period previously suggested in the literature. We also found that the eclipse timing variations observed in the binary might depend on the reduction and processing of the Kepler data. The other two objects analyzed in this work do not have Jupiter mass exoplanets orbiting within 0.7 - 1.4 AU from them, or larger-mass objects on closer orbits (the given mass limits are minimum masses).Comment: 8 page

    Exploring Student and Faculty Reactions to Smartphone Policies in the Classroom

    Get PDF
    The current studies examined attitudes about classroom cell phone usage and reactions to cell phone policies among students and faculty. Study 1 documented students’ and faculty’s perceptions of appropriateness of cell phones in the classroom and about what classroom policies should be. Students reported greater leniency regarding cell phone use in the classroom and suggested stricter penalties for inappropriate use. Study 2 surveyed faculty and students about four cell phone policies ranging in level of leniency. The results indicated as policy leniency increased, cell phone use increased and enforcement decreased. Study 3 evaluated students’ reactions to actual classroom cell phone policies. Students reported using their phones more than they anticipated and rated policy enforcement lower than expected, except under a prohibitive policy. These results indicate that differences remain between faculty and students and that there is a mismatch between what students prefer and perceive as effective cell phone policies

    Signatures of the disk-jet coupling in the Broad-line Radio Quasar 4C+74.26

    Full text link
    Here we explore the disk-jet connection in the broad-line radio quasar 4C+74.26, utilizing the results of the multiwavelength monitoring of the source. The target is unique in that its radiative output at radio wavelengths is dominated by a moderately-beamed nuclear jet, at optical frequencies by the accretion disk, and in the hard X-ray range by the disk corona. Our analysis reveals a correlation (local and global significance of 96\% and 98\%, respectively) between the optical and radio bands, with the disk lagging behind the jet by 250±42250 \pm 42 days. We discuss the possible explanation for this, speculating that the observed disk and the jet flux changes are generated by magnetic fluctuations originating within the innermost parts of a truncated disk, and that the lag is related to a delayed radiative response of the disk when compared with the propagation timescale of magnetic perturbations along relativistic outflow. This scenario is supported by the re-analysis of the NuSTAR data, modelled in terms of a relativistic reflection from the disk illuminated by the coronal emission, which returns the inner disk radius Rin/RISCO=3516+40R_{\rm in}/R_{\rm ISCO} =35^{+40}_{-16}. We discuss the global energetics in the system, arguing that while the accretion proceeds at the Eddington rate, with the accretion-related bolometric luminosity Lbol9×1046L_{\rm bol} \sim 9 \times 10^{46} erg s1^{-1} 0.2LEdd\sim 0.2 L_{\rm Edd}, the jet total kinetic energy Lj4×1044L_\textrm{j} \sim 4 \times 10^{44} erg s1^{-1}, inferred from the dynamical modelling of the giant radio lobes in the source, constitutes only a small fraction of the available accretion power.Comment: 9 pages and 6 figures, ApJ accepte

    Defective antigen presentation by monocytes in ESRD patients not responding to hepatitis B vaccination: impaired HBsAg internalization and expression of ICAM-1 and HLA-DR/Ia molecules

    Get PDF
    This study was undertaken to evaluate the monocyte function of uraemic non-responders to hepatitis B vaccination. Therefore, some parameters concerning antigen processing by monocytes (Mo) as antigen presenting cells (APC) were analysed. It was found that in uraemic non-responders, (1) the internalization of HBsAg by monocytes was significantly decreasjed—HBsAg complexed with specific IgG or as immune complex isolated from patients is better internalized compared with free HBsAg; (2) during antigen presentation the expression of adhesion (ICAM-1) and accessory (HLA-DR/Ia) molecules was significantly decreased in uraemic patients, especially in non-responders; and (3) impaired internalization of HBsAg as well as a decrease in ICAM-1 and HLA-DR/Ia expression, correlated well with the blunted proliferation of CD4+ T cells stimulated by autologous monocytes induced by HBsAg

    Radial Velocity Studies of Close Binary Stars.VIII

    Full text link
    Radial-velocity measurements and sine-curve fits to the orbital velocity variations are presented for the seventh set of ten close binary systems: V410 Aur, V523 Cas, QW Gem, V921 Her, V2357 Oph, V1130 Tau, HN UMa, HX UMa, HD 93917, NSV 223. All systems, but three (V523 Cas, HD 93917, NSV 223), were discovered photometrically by the Hipparcos mission. All systems are double-lined (SB2) binaries and all, but the detached, very close system V1130 Tau, are contact binaries. The broadening-function permitted improvement of the orbital elements for V523 Cas, which was the only system observed before for radial velocity variations. Spectroscopic/visual companions were detected for V410 Aur and HX UMa.Comment: AASTeX5, 4 figures, 3 tables, to appear AJ, June 200

    The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields. I. Techniques and tests of the methods

    Get PDF
    Context. In this study, we independently test the presence of an exoplanet around the binary KIC 9472174, which is composed of a red dwarf and a pulsating type B subdwarf. We also present the results of our search for Jupiter-mass objects orbiting near to the eclipsing binary KIC 7975824, which is composed of a white dwarf and type B subdwarf, and the pulsating white dwarf KIC 8626021. Aims: The goal is to test analytical techniques and prepare the ground for a larger search for possible substellar survivors on tight orbits around post-common envelope binaries and stars at the end of their evolution, that is, extended horizontal branch stars and white dwarfs. We, therefore, mainly focus on substellar bodies orbiting these stars within the range of the host's former red-giant or asymptotic-giant phase envelopes. Due to the methods we use, the quest is restricted to single-pulsating type B subdwarf and white dwarf stars and short-period eclipsing binaries containing a white dwarf or a subdwarf component. Methods: Our methods rely on the detection of exoplanetary signals hidden in photometric time series data from the Kepler space telescope, and they are based on natural clocks within the data itself, such as stellar pulsations and eclipse times. The light curves are analyzed using Fourier transforms, time-delays, and eclipse timing variations. Results: Based on the three objects studied in this paper, we demonstrate that these methods can be used to detect giant exoplanets orbiting around pulsating white dwarf or type B subdwarf stars as well as short-period binary systems, at distances which fall within the range of the former red-giant envelope of a single star or the common envelope of a binary. Using our analysis techniques, we reject the existence of a Jupiter-mass exoplanet around the binary KIC 9472174 at the distance and orbital period previously suggested in the literature. We also found that the eclipse timing variations observed in the binary might depend on the reduction and processing of the Kepler data. The other two objects analyzed in this work do not have Jupiter mass exoplanets orbiting within 0.7-1.4 AU from them, or larger-mass objects on closer orbits (the given mass limits are minimum masses). Conclusions: Depending on the detection threshold of the time-delay method and the inclination of the exoplanet orbit toward the observer, data from the primary Kepler mission allows for the detection of bodies with a minimum of ~1 Jupiter-mass orbiting these stars at ~1 AU, while data from the K2 mission extends the detection of objects with a minimum mass of ~7 Jupiter-mass on ~0.1 AU orbits. The exoplanet mass and orbital distance limits depend on the length of the available photometric time series
    corecore