High-angular-resolution imaging is crucial for many applications in modern
astronomy and astrophysics. The fundamental diffraction limit constrains the
resolving power of both ground-based and spaceborne telescopes. The recent idea
of a quantum telescope based on the optical parametric amplification (OPA) of
light aims to bypass this limit for the imaging of extended sources by an order
of magnitude or more. We present an updated scheme of an OPA-based device and a
more accurate model of the signal amplification by such a device. The
semiclassical model that we present predicts that the noise in such a system
will form so-called light speckles as a result of light interference in the
optical path. Based on this model, we analysed the efficiency of OPA in
increasing the angular resolution of the imaging of extended targets and the
precise localization of a distant point source. According to our new model, OPA
offers a gain in resolved imaging in comparison to classical optics. For a
given time-span, we found that OPA can be more efficient in localizing a single
distant point source than classical telescopes.Comment: Received: 11 November 2017, revision received: 31 January 2018,
accepted: 31 January 201