57 research outputs found

    Could the Anti-Chaperone VER155008 Replace Temozolomide for Glioma Treatment

    Get PDF
    Cancer inducible molecular chaperone HSP90 is of great importance as an anticancer target. Proteomic analysis showed that inhibiting HSP90 by the geldanamycin derivative, 17-AAG elevated the expression of the co-chaperone Hsp70. In this study we used HSP90 selective inhibitor 17-AAG and HSP70/90 dual inhibitor, VER155008 (VER) in U87-MG glioma cells. miRNAs microarray technology was used to evaluate the efficacy of these inhibitory drugs compared with temozolomide (TMZ), used as a standard treatment for glioma. Microarrays data identified 154 differentially expressed miRNAs using stringent or unstringent parameters. 16 miRNAs were overlapped between treatments, 13 upregulated and one downregulated miRNA were overlapped between TMZ and VER. The miRNA target prediction software was used for these overlapped miRNAs and identified 6 of the 13 upregulated miRNAs target methyltransferase genes. The IC50, together with Akt and HSP70 and 90 protein level data favour VER and TMZ to 17-AAG, however due to the selectivity of VER to cancer cells as a potent antichaperon, it may be more favourable to the standard TMZ

    Could Upregulated Hsp70 Protein Compensate for the Hsp90-Silence-Induced Cell Death in Glioma Cells?

    Get PDF
    The molecular chaperone heat shock protein 90 alpha (Hsp90α) has been recognized in various tumours including glioma. This pilot study using a proteomic approach analyses the downstream effects of Hsp90 inhibition using 17-allylamino-17-demethoxygeldanamycin (17AAG) and a short hairpin RNA (shRNA) oligonucleotide targeting hsp90α (shhsp90α) in the U87-MG glioma cell line. Preliminary data coupled with bioinformatic analysis identified several known and unknown Hsp90 client proteins that demonstrated a change in their protein expression after Hsp90 inhibition, signifying an alteration in the canonical pathways of cell cycle progression, apoptosis, cell invasion, angiogenesis, and metastasis. Members of the glycolysis pathway were upregulated, demonstrating increased dependency on glycolysis for energy source by the treated glioma cells. Upregulated proteins also include Hsp70 and members of its family such as Hsp27 and gp96, thereby suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 function after Hsp90 inhibition. Considering Hsp70’s role in antiapoptosis, it was postulated that a combination therapy involving a multitarget approach could be carried out. Consequently inhibition of both Hsp90 and Hsp70 in U87-MG glioma cells resulted in 60% cell death indicating the importance of combination therapy for glioma therapeutics

    Could Upregulated Hsp70 Protein Compensate for the Hsp90-Silence-Induced Cell Death in Glioma Cells?

    Get PDF
    The molecular chaperone heat shock protein 90 alpha (Hsp90α) has been recognized in various tumours including glioma. This pilot study using a proteomic approach analyses the downstream effects of Hsp90 inhibition using 17-allylamino-17-demethoxygeldanamycin (17AAG) and a short hairpin RNA (shRNA) oligonucleotide targeting hsp90α (shhsp90α) in the U87-MG glioma cell line. Preliminary data coupled with bioinformatic analysis identified several known and unknown Hsp90 client proteins that demonstrated a change in their protein expression after Hsp90 inhibition, signifying an alteration in the canonical pathways of cell cycle progression, apoptosis, cell invasion, angiogenesis, and metastasis. Members of the glycolysis pathway were upregulated, demonstrating increased dependency on glycolysis for energy source by the treated glioma cells. Upregulated proteins also include Hsp70 and members of its family such as Hsp27 and gp96, thereby suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 function after Hsp90 inhibition. Considering Hsp70’s role in antiapoptosis, it was postulated that a combination therapy involving a multitarget approach could be carried out. Consequently inhibition of both Hsp90 and Hsp70 in U87-MG glioma cells resulted in 60% cell death indicating the importance of combination therapy for glioma therapeutics

    A novel series of phenolic temozolomide (TMZ) esters with 4 to 5-fold increased potency, compared to TMZ, against glioma cells irrespective of MGMT expression†

    Get PDF
    The standard of care treatment for patients diagnosed with glioblastoma multiforme (GBM) is temozolomide (TMZ). Tumour resistance to TMZ results in significantly limited clinical effectiveness. There is therefore an inherent need for alternatives to TMZ capable of overcoming resistance associated with MGMT and MMR. In the present study, a series of ester and amide analogues of TMZ, modified at position 8 on the imidazole ring, were prepared and investigated for antiproliferative properties. It was found that phenolic ester analogues of TMZ displayed increased potency, of up to 5-fold, against specified glioblastoma cell lines. The encouraging results displayed by the phenolic TMZ esters prompted further investigations against patient-derived primary glioblastoma cultures. The primary cultures, BTNW914 and BTNW374, were MGMT positive and MGMT negative, respectively. Lead phenolic TMZ esters were found to decrease viability in primary cells at clinically relevant concentrations, irrespective of MGMT expression. Furthermore, TMZ was found to be ineffective against the same primary cells at clinically relevant concentrations. The novel phenyl ester analogues of TMZ, described in this study, could have potential chemotherapeutic properties for the treatment of GBM, overcoming the resistance associated with the expression of MGMT

    Identifying Reliable Diagnostic/Predictive Biomarkers for Rheumatoid Arthritis

    Get PDF
    Introduction and objective: Elevated C-reactive protein is usually a good indicator of rheumatoid arthritis (RA); however, there are limitations that compromise its specificity and therefore there is an urgent need to identify more reliable diagnostic biomarkers to detect early stages of RA. In addition, identifying the correct therapeutic biomarker for the treatment of RA using methotrexate (MTX) would greatly increase the benefits experienced by the patients. Materials and methods: Primary normal synoviocytes human fibroblast-like synoviocytes (HFLS) and its phenotype rheumatic HFLS-RA cells were chosen for this study. The HFLS-RA–untreated and MTX-treated cells were subjected to microarray analysis. Results: Microarray data identified 74 differentially expressed genes. These genes were mapped against an RA inflammatory pathway, shortlisting 10 candidate genes. Gene expression profiling of the 10 genes were studied. Fold change (FC) was calculated to determine the differential expression of the samples. Discussion: The transcription profiles of the 10 candidate genes were highly induced in HFLS-RA cells compared with HFLS cells. However, on treating the HFLS-RA cells with MTX, the transcription profiles of these genes were highly downregulated. The most significant expression FC difference between HFLS and HFLS-RA (treated and untreated) was observed with HSPA6, MMP1, MMP13, and TNFSF10 genes. Conclusions: The data from this study suggest the use of HSPA6, MMP1, MMP13, and TNFSF10 gene expression profiles as potential diagnostic biomarkers. In addition, these gene profiles can help in predicting the therapeutic efficacy of MTX

    Temperature and Solvent Facilitated Extrusion Based 3D Printing for Pharmaceuticals.

    Get PDF
    On demand manufacturing of patient-specific oral doses provides significant advantages to patients and healthcare staff. Several 3D printing (3DP) technologies have been proposed as a potential digital alternative to conventional manufacturing of oral tablets. For additive manufacturing approach to be successful for on-demand preparation, a facile process with minimal preparation steps and training requirements is needed. A novel hybrid approach to the 3D printing process is demonstrated here based on combined both a solvent and heating to facilitate extrusion. The system employed a moderate elevated temperature range (65-100 C), a brief drying period, and a simple set-up. In this approach, a compact material cylinder is used as a pharmaceutical ink to be extruded in a temperature-controlled metal syringe. The process proved compatible with hygroscopic polymers [Poly(vinyl alcohol (PVA) and polyvinylpyrrolidone (PVP)] and a number of pharmaceutical fillers (lactose, sorbitol and D-mannitol). The fabricated tablets demonstrated compendial acceptable weight and content uniformity as well as mechanical resistance. In vitro drug release of theophylline from 3D printed tablets was dependant on the nature of the polymer and its molecular weight. This reported approach offers significant advantages compared to other 3DP technologies: simplification of pre-product, the use of a moderate temperature range, a minimal drying period, and avoiding the use of mechanically complicated machinery. In the future, we envisage the use of this low-cost and facile approach to fabricate small batches of bespoke tablets. [Abstract copyright: Copyright © 2020. Published by Elsevier B.V.

    ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA

    Get PDF
    Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM

    The TERT rs2736100 Polymorphism and Cancer Risk: A Meta-analysis Based on 25 Case-Control Studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between the <it>TERT rs2736100 </it>single nucleotide polymorphism (SNP) and cancer risk has been studied by many researchers, but the results remain inconclusive. To further explore this association, we performed a meta-analysis.</p> <p>Methods</p> <p>A computerized search of PubMed and Embase database for publications on the <it>TERT rs2736100 </it>polymorphism and cancer risk was performed and the genotype data were analyzed in a meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis and assessment of bias were performed in our meta-analysis.</p> <p>Results</p> <p>A significant association between the <it>TERT rs2736100 </it>polymorphism and cancer susceptibility was revealed by the results of the meta-analysis of the 25 case-control studies (GG versus TT: OR = 1.72, 95% CI: 1.58, 1.88; GT versus TT: OR = 1.38, 95% CI: 1.29, 1.47; dominant model-TG + GG versus TT: OR = 1.47, 95% CI: 1.37, 1.58; recessive model-GG versus TT + TG: OR = 1.37, 95% CI 1.31, 1.43; additive model-2GG + TG versus 2TT + TG: OR = 1.30, 95% CI: 1.25, 1.36). Moreover, increased cancer risk in all genetic models was found after stratification of the SNP data by cancer type, ethnicity and source of controls.</p> <p>Conclusions</p> <p>In all genetic models, the association between the <it>TERT rs2736100 </it>polymorphism and cancer risk was significant. This meta-analysis suggests that the <it>TERT rs2736100 </it>polymorphism may be a risk factor for cancer. Further functional studies between this polymorphism and cancer risk are warranted.</p

    Prognostic molecular markers with no impact on decision-making: the paradox of gliomas based on a prospective study

    Get PDF
    This study assessed the prognostic value of several markers involved in gliomagenesis, and compared it with that of other clinical and imaging markers already used. Four-hundred and sixteen adult patients with newly diagnosed glioma were included over a 3-year period and tumour suppressor genes, oncogenes, MGMT and hTERT expressions, losses of heterozygosity, as well as relevant clinical and imaging information were recorded. This prospective study was based on all adult gliomas. Analyses were performed on patient groups selected according to World Health Organization histoprognostic criteria and on the entire cohort. The endpoint was overall survival, estimated by the Kaplan–Meier method. Univariate analysis was followed by multivariate analysis according to a Cox model. p14ARF, p16INK4A and PTEN expressions, and 10p 10q23, 10q26 and 13q LOH for the entire cohort, hTERT expression for high-grade tumours, EGFR for glioblastomas, 10q26 LOH for grade III tumours and anaplastic oligodendrogliomas were found to be correlated with overall survival on univariate analysis and age and grade on multivariate analysis only. This study confirms the prognostic value of several markers. However, the scattering of the values explained by tumour heterogeneity prevents their use in individual decision-making

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
    corecore