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A B S T R A C T 24 

On demand manufacturing of patient-specific oral doses provides significant advantages to patients and 25 

healthcare staff. Several 3D printing (3DP) technologies have been proposed as a potential digital 26 

alternative to conventional manufacturing of oral tablets. For additive manufacturing approach to be 27 

successful for on-demand preparation, a facile process with minimal preparation steps and training 28 

requirements is needed. A novel hybrid approach to the 3D printing process is demonstrated here based 29 

on combined solvent and heating elements/factors/aspects to facilitate extrusion. The system employed 30 

a moderate elevated temperature range of (65-100 oC), a brief drying period, and a simple set-up. In this 31 

approach, a compact powder cylinder is used as a pharmaceutical ink to be extruded in a temperature-32 

controlled metal syringe. The process proved compatible with hygroscopic polymers [Poly(vinyl 33 

alcohol (PVA)  and poly(vinyl pyridine) (PVP)] and a number of pharmaceutical fillers (lactose, 34 

sorbitol and mannitol). The fabricated tablets demonstrated compendial acceptable weight and content 35 

uniformity as well as mechanical resistance. In vitro drug release of theophylline from 3D printed tablets 36 

was dependant on the nature of the polymer and its molecular weight. This reported approach offers 37 

significant advantages compared to other 3DP technologies:  simplification of pre-product, the use of a 38 

moderate temperature range, a minimal drying period, and avoiding the use of mechanically 39 

complicated direct extruder machinery. In the future, we envisage the use of this low-cost and facile 40 

approach to fabricate small batches of bespoke tablets.  41 

 42 
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1. Introduction 45 

The demand for personalised therapies has been increasing over the last decade due to the most recent 46 

advances in pharmacogenomics and stratified medicine. This has allowed complex diseases and their 47 

biological mechanisms to be better understood and to develop more effective strategies to predict and 48 

prevent illnesses, as well as to treat them [1-3]. Such developments in personalised therapies induced 49 

the interest in developing digital solutions for small batch production of patient-specific dosage forms 50 

[4, 5]. 51 

The past few years have witnessed a growing interest in 3D printing (3DP) as an on-demand 52 

manufacturing tool for small batch manufacturing, age-specific products in paediatrics [6, 7] and 53 

meeting the needs of polypharmacy [8-10]. With several 3DP technologies available, fused deposition 54 

modelling (FDM) 3DP has been proposed as a low-cost solution for the fabrication of patient specific 55 

dosage forms [11-16]. The FDM technology offers significant potential advantages including process 56 

simplicity, the lack of drying or finishing steps and potential of mass production of low-cost 57 

pharmaceutical printers and ink cartridges. However, FDM 3DP has to overcome some significant 58 

technical challenges to wider uptake and adoption as it exposes the starting pharmaceutical material to 59 

two sequential-thermal processes (when hot melt extrusion-based filaments are used as a feed) [5, 17], 60 

engineering and optimizing the ‘feedability’ of the filament [18-20], as well as minimising the risk of 61 

mechanical and physical modification of the filament during storage prior to on-demand 3DP. Such 62 

challenges might hinder or slow down the advances of this important technology in the pharmaceutical 63 

market. Several modifications to FDM 3DP have been applied to reduce the thermal stress of the 64 

printing process. For instance, Okwuosa et al. [21] pioneered the use of poly(vinyl alcohol) (PVA) to 65 

reduce the printing temperature to as low as 110 oC. Other adaptations have further reduced the printing 66 

temperature by employing polymers with low glass transition temperature (90 oC) [22], by the 67 

replacement of filaments with softer extruded polymer strands as low as 54 oC  [23, 24], or  by using 68 

water in filament preparation step as a temporary plasticiser [9].  69 

Extrusion-based 3DP has been proposed as an alternative method of manufacture of tablets. While the 70 

former obviates the need of engineering and stabilising filaments, it faces a major challenge of extruding 71 

a material into solidifying structures in acceptable time. The extrusion of semi-solids (drug suspension) 72 

at room temperature can be employed using a printer often used in tissue engineering [10, 25-27]. The 73 

process involves the use of powder slurry in a significant amount of water [25, 27, 28] or ethanol [29]. 74 

By using thermally heated piston-operated syringe (<70 oC), extrusion-based 3D printing was also 75 

employed to produce solid self-micro-emulsifying drug delivery systems [30] and chewable jelly-like 76 

tablets [31]. Alternatively, extrusion can be carried out at high temperature with built-in screw extruder 77 

[32]. However, this promising technology must overcome several barriers such balancing efficient 78 

extrusion process with the use of typically heavy machinery (hot extruder motor assembly) that are 79 
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often needed to provide sufficient torque for extrusion as well as providing easy solution for batch-to-80 

batch cleaning of complex-shaped screws in the extruder assembly. 81 

In this paper, we present the use of a novel alternative approach of temperature and solvent facilitated 82 

extrusion-based 3D printing as a facile manufacturing process suitable for extemporaneous preparations 83 

near to the patient. This hybrid approach of combining solvent and elevated temperature for fabrication 84 

of oral tablets uses an extrusion-based system that is delivered by simple metal syringe. We envisage 85 

the use of a compressed powder cylinder as a pharmaceutical ink. 86 

2. Materials and methods 87 

2.1 Materials 88 

Theophylline was purchased from Acros Organics (UK). Three grades of Poly(vinyl alcohol) were used: 89 

PVA 20-30K and PVA 83K were supplied from Fisher scientific UK, and PVP Parteck® MXP [MXP, 90 

k75] was donated by Merck (Darmstadt, Germany). Polyvinylpyrrolidone (PVP, Plasdone™ K-29/32) 91 

was donated by Ashland (UK). Sodium stearyl fumarate (PRUV) was donated by JRS (Germany) and 92 

sorbitol was purchased from Merck (Parteck SI, Germany). D-mannitol, lactose and HPLC gradient 93 

grade acetonitrile were obtained from Fisher Scientific Ltd (Loughborough, UK). 94 

2.2 Preparation for the feed 95 

The model drug (theophylline) and polymer (PVA 20-30K, Parteck [MXP, k75], PVA 83K, PVP) in 96 

addition to other additives were accurately weighed and thoroughly mixed via shear mixing using Krups 97 

F20342 grinder (Germany). The breakdown of each blend compositions is detailed in Table 1. Initially, 98 

sorbitol was selected as a primary plasticiser as established plasticising capacity for PVA matrixes [33, 99 

34] and structure enhancer. Lactose and D-mannitol were added for common use as highly soluble 100 

structure enhancers [35, 36]. Preliminary screening work indicated that material flow from the syringe 101 

could be significantly enhanced by the addition of sodium stearyl fumarate at 5% as a lubricant. Further 102 

increase in of sodium stearyl fumarate led to incomplete 3D printing due to poor adhesion of the tablet 103 

to the printing plate or weak fusion of the printed layers. To approximately 10 g of each blend, an 104 

additional 2 g of deionised water was added to each formulation and mixed for an additional 30 seconds. 105 

Each blend was compressed using a 12 mm diameter metal syringe (Hyrel 3D, Atlanta, USA) to form 106 

10 cm height cylinder. The compressed cylinder (based on 12 g of polymer blend + water) were stored 107 

in plastic polybag and used as feed for the 3D printing process (Section 2.3).  108 

In order to assess the impact of the filler nature, sorbitol was replaced with an equivalent amount of D-109 

mannitol or lactose. To assess the impact of different plasticiser concentrations of sorbitol: 15%, 20% 110 

and 25% (w/v) were assessed. Table 1 provides a summary of all formulations prepared using TASFEX 111 

technology. 112 
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2.3 Tablet design and TASFEX 3D printing 113 

The tablets were designed in a cylindrical shape using Autodesk® 3ds Max Design 2019 (Autodesk, 114 

Inc., USA). The designs were then imported to the Slic3r (version 1.3) software in stereolithographic 115 

(STL) format and converted to gcode files using the settings specified as: layer thickness 0.3 mm, first 116 

layer thickness 0.5 mm, speed perimeters 50%, infill speed 7 mm/sec, travel speed 15 mm/sec, first 117 

layer build speed 7 mm/sec, and nozzle diameter 1.19 mm. 118 

A Hyrel System 30M (Hyrel 3D, Atlanta, USA) equipped with a VOL-25 (Volcano) modular head and 119 

a 16-gauge stainless steel tip was used to fabricate the tablets. The default glass plate was replaced with 120 

an acrylic sheet for better adhesion to the building plate. The settings inserted in the Repetrel software 121 

(version 3.0) for the printer head were: nozzle diameter: 1.194, thickness of layer z: 0.3 mm, motor 122 

pulses rate: 2.3 pulses/nL, infill percentage: 100% and a material flow multiplier: 1.2. Following the 123 

printing process the tablets were dried for 2 hours at 50 oC using Binder Drying chamber 9010 (Binder 124 

GmbH, Germany). Prior to printing, the compressed cylinder was placed in the heated syringe and 125 

heated at processing temperature for 30 min. 126 

2.4 Thermal analysis 127 

Samples of the raw materials, dry physical mixture and 3D printed tablets were analysed by differential 128 

scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC Q2000 (TA Instruments, 129 

Elstree, UK) was used to assess the thermal behaviour of the samples: approximately 5 mg samples 130 

were scanned from 0 to 300°C using at a heating rate of 10°C/min and a nitrogen purge of 50 mL/min 131 

using standard aluminium pans and lids. TGA Q500 (TA Instruments, Elstree, Hertfordshire, UK) was 132 

used to analyse approximately 10 mg of each material filled in platinum pans. Samples were heated at 133 

a rate of 10°C/min from 25°C to 500°C with a nitrogen purge of 40:60 ml/min for sample: furnace 134 

respectively. TA Universal analysis software (v 4.5A, TA Instruments, Elstree, UK) was used to analyse 135 

data for both DSC and TGA. 136 

2.5 X-Ray Diffractometry (XRD) 137 

A powder X-ray diffractometer, D2 Phaser with Lynxeye (Bruker, Germany) was used to assess the 138 

physical form of the model drug and fillers within the 3D printed tablets. Samples were scanned from 139 

2Theta = 5° to 50° using 0.01° step width and a 1.25 s time count. The divergence slit was 1 mm and 140 

the scatter slit 0.6 mm. The wavelength of the X-ray was 0.154 nm using Cu source and a voltage of 141 

30 kV. Filament emission was 10 mA using a scan type coupled with a theta/theta scintillation counter 142 

over 60 min. 143 

2.6 Water contents 144 
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The water content was determined using Karl Fischer method (KF) using Metorhm 870 KF Titrino plus 145 

(Metrohm UK Ltd., Runcorn, UK). Each ingredient and dried 3D printed tablets has been measured 146 

sample (500 mg) accurately weight using Mettler Toledo analytical balance (Mettler, Germany). The 147 

water content was calculated via Titrino plus software (Metrohm UK Ltd., Runcorn, UK) or end-point 148 

was utilized for % water content calculation.  149 

 150 

2.7 Dimensions and mechanical properties of the 3D printed tablet 151 

To assess the mechanical resistance of 3D printed tablets, the 3D printed tablets were assessed 152 

using Agilent 200 Tablet Hardness Tester (Agilent Technologies). Measurements of resistance 153 

to crushing of the tablet were carried out in triplicates for each selected formulation. The 154 

friability of 3D printed tablets (n=10) were accurately weighed, placed in the apparatus drum 155 

of Agilent Dual-drum Friability Tester 250 (Agilent Technologies) and rotated 100 times. The 156 

dimensions of 3D tablet dimensions were assessed using eSYNic Digital Vernier digital 157 

calliper (eSYNic, China). A randomly selected 10 3D printed tablets from each selected 158 

formulation were and weighed. The average mass, standard deviation and percentage deviation 159 

from average mass were determined for each batch.  160 

2.8 Analysis of drug contents using HPLC 161 

Theophylline content of the tablets was assessed using an Agilent 1260 series UV-HPLC 162 

(Agilent Technologies, Germany) with XTerra RP 18 column (150 × 4.6 mm, 5 μm particle 163 

size) (Waters, Ireland) as previously reported [21]. The mobile phase (86:7:7 volume ratio of 164 

10 mM ammonium acetate buffer: methanol: acetonitrile) was applied at flow rate of 1 mL/min 165 

at temperature 40°C. Samples were injected  (5 μL) and the run time of 7 min and analysis was 166 

carried out at a wavelength of 272 nm. 167 

2.9 Scanning Electron Microscopy (SEM) 168 

The morphology and cross-section of the tablets were assessed using a JCM-6000 plus 169 

NeoScope™ microscope (Jeol, Tokyo, Japan) at 10 kV. All samples were gold coated using a 170 

JFC-1200 Fine Coater (Jeol, Tokyo, Japan). The images were collected using Image J software 171 

(v 1.2.0., Tokyo, Japan). 172 

2.10 In vitro disintegration and dissolution  173 

In vitro disintegration and drug release studies. Tablet disintegration was carried out using an 174 

Erweka ZT220 disintegration testing apparatus (Erweka GmbH, Heusenstamm, Germany). 175 
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Three tablets were randomly selected, weighed and each placed in a basket rack assembly of 176 

six cylinders and weights were added on the top of the tablets. The basket rack assembly was 177 

then immersed into a beaker containing 0.1M hydrochloric acid at 37 ̊C. The exact time for all 178 

tablets to fully leave the mesh was visually noted. 179 

In vitro drug release testing. The impact of the tablet’s design on the release pattern of the 3D 180 

printed tablets was assessed using a USP II dissolution test paddle apparatus (Erweka GmbH, 181 

Germany). The dissolution study was conducted in 900 mL of 0.1 M hydrochloric acid (pH 182 

1.2) at 37 ± 0.5 °C and with paddle speed of 50 rpm. The amount of released theophylline was 183 

determined at 5 min intervals by UV/VIS spectrophotometer (PG Instruments Limited, UK) at 184 

a wavelength of 272 nm and a path length of 1 mm. Data were analysed using IDISis software 185 

version 2012 (Automated Lab, Berkshire, UK). 186 

3. Results and Discussion 187 

The manufacturing equipment required for TASFEX is illustrated in Fig. 1. Here, a 188 

cylinder of compressed pharmaceutical ink is loaded into a metal syringe and water is added. 189 

The material is pressurised under a moderately elevated temperature (50-100oC) using the 190 

support of a piston stepper motor with a built-in gear to increase the load-to-motor inertia ratio 191 

and to reduce motor oscillation. In this arrangement, the starting material can be loaded as a 192 

compressed powder in a form of cylinder (12mm diameter x 60 mm height) to produce a set 193 

number of tablets. The simplicity of this set-up and the lack of screw parts of complicated 194 

design that necessitate special cleaning protocols make it particularly suitable for dispensing 195 

bespoke doses in a hospital setting. In the future, it is possible to employ low-cost thermally 196 

conductive disposable syringes to eliminate the risk of cross-contamination for production of 197 

multiple batches. 198 

Initially, tablet extrusion was carried out without the inclusion of water. However, no 199 

material flow was possible at the process temperature of 90oC. Preliminary investigations 200 

indicated that a significant increase of the plasticiser (sorbitol) ratio allow significant material 201 

flow. However, this approach led to the formation of a highly flexible matrix that was not 202 

suitable for oral tablet structure (data not shown). Here, we adapted the solution of adding water 203 

as a temporary plasticiser as previously reported [9]. In this approach, water was added to the 204 

final powder blends to facilitate the printing of these tablets. Table 1 shows the content of 205 

different formulations which were prepared using the novel TASFEX system. The inclusion of 206 

water allowed a sufficient material flow from the temperature-controlled metal syringe and 207 
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enabled 3D printing at relatively low temperature (65-100oC). The concentration of plasticiser 208 

(sorbitol) was varied in the presence of a fixed amount of water and the fabrication process was 209 

successful in a sorbitol concentration range of 15-25%w/v. A filler ratio of 20% was chosen, 210 

as it yielded the most visually desirable structure of a smooth surface and a consistent filling. 211 

In order to assess the suitability of the process to different fillers, two additional sugars (lactose 212 

and D-mannitol) were incorporated in the formulation which yielded well-structured tablets 213 

demonstrating the versatility of the process (Figs. 2 a1-d1).  214 

SEM images indicated the formation of relatively smooth upper surface of tablets (Figs. 215 

2 a2-d2). Each layer was composed of 300m layers (Figs. 2 a3-d3). Interestingly, the SEM 216 

images of the cross-sections of the tablet indicated that PVA-based tablet made with lactose 217 

and D-mannitol showed individual layers, tablets that are based on PVA-sorbitol and PVP-218 

lactose demonstrated a more cohesive structure with seamless lines between the deposited 219 

layers (Figs. 2 a4-d4). 220 

The TGA thermograph showed that all molecules were stable at the processing 221 

temperature (100 oC) (Fig. 3). In all these examples, the 3D printed tablets appeared to lose 222 

approximately <3% of their total mass due to moisture evaporation. The magnitude of this loss 223 

is significantly lower in the powder blend (physical mixture) in comparison to the 3D printed 224 

tablets, indicating that these tablets retained some level of water.  To assess the impact of drying 225 

process, Karl Fisher analysis was used to assess the percentage of moisture content in the dried 226 

3D printed tablets Table S1 (Supplementary data). The analysis indicated that drying process 227 

yielded 3D printed tablet (F2) of minimal water contents (<0.5%). While this approach offers 228 

advantages over using highly diluted drug and additive slurry [25, 27, 28]  and producing 229 

relatively solid structure before any additional drying process, the elevated processing 230 

temperature might be less suitable for thermally labile drug.  231 

DSC thermographs indicated that onset of melting points of sorbitol, lactose and 232 

mannitol of 91, 140 and 164 oC respectively [37]. The physical blend indicated the presence of 233 

these peaks in their corresponding thermographs. When the 3D printed tablets were tested, 234 

minor or no endothermal peak were seen in sorbitol tablets (n=3) (Fig. 4a), whilst the 235 

endotherm melting peaks was clearer in both D-mannitol and lactose thermographs (Figs. 4b, 236 

4c). The role of sorbitol as a plasticiser has been described before in PVA matrix [38]. The 237 

significant ability of this sugar to plasticise PVA matrix was directly related to its ability to 238 

form hydrogen bonds with -hydroxyl groups of PVA structure as well as water molecules, 239 



 9 

hence enhancing the polymer ability to retain water [39]. These findings suggest that lactose 240 

and mannitol might be less miscible within the PVA matrix and therefore a significant portion 241 

of the sugar were in the crystalline form within the 3D printed structure.  242 

XRD intensity patterns indicated that sorbitol (as received) has distinctive intensity 243 

peaks of 2Theta = 12.12 O and 19.1O (Fig. 5a). While these peaks appeared in the physical 244 

mixture, they were absent in the XRD patterns of the 3D printed tablets, and hence confirmed 245 

that sorbitol was mainly in the amorphous form within the 3D printed tablet matrix. However, 246 

in the case of lactose (2Theta = 16.4o) and D-mannitol (2Theta = 16.9, 35.9 and 44.13o) 247 

suggesting that both fillers were in crystalline form (Figs. 5 b and c). This could be the result 248 

of applying processing temperatures (90-100 oC) that reached the melting point of sorbitol (91 249 

oC), but below the melting point of lactose and D-mannitol (140 and 164 oC).  The presence of 250 

both lactose and D-mannitol in crystalline form might have favoured the formation of tablets 251 

of improved physical structure. XRD patterns also indicated that theophylline was in crystalline 252 

form with the presence of peaks 2Theta = 6.8 and 12.3o (Figs. 5 a, b and c).  253 

The extrudability of the polymeric matrix can be linked to its rheological behaviour. 254 

The complex viscosity of the material were observed to drop down when polymer was blended 255 

with other non-melting additives [40, 41]. It was noticed that the glass transition temperature 256 

(Tg) dropped with the decrease in the complex viscosity of the mixture [41]. In another 257 

example, the addition of sugar (lactose, mannitol, or sorbitol) to polyethylene glycol matrix 258 

was noticed to help in controlling the complex viscosity [42] by maintaining a shear-thinning 259 

behaviour, which is required for extrudability followed by solidification at room temperature. 260 

In order to demonstrate the versatility of the presented method to accommodate 261 

different polymer species, pyrrolidine derivative (PVP) was also tested as a polymer species 262 

and yielded a tablet (Fig. 2f). Physical analysis indicated that lactose was in the crystalline 263 

form (endotherm of melting peak onset at 140 oC and an intensity peak XRD patterns (2Theta 264 

= 16.4o) (Fig. 6). However, when less hydrophilic polymers (e.g. Eudragit E, Eudragit L, 265 

Eudragit EPO or HPC SL) were applied in the same formulation, the solvent (water) separated 266 

from the powder bulk (Eudragit E and HPC SL) or the extruded filaments from hot nozzle 267 

failed to fuse together following application from the nozzle to yield a cohort 3D structure. 268 

This demonstrates that the reported TASFEX approach is more suitable for polymer systems 269 

with functional groups of hydrophilic properties which are able to retain water within the 270 

polymeric matrix and facilitates multilayer adhesion upon hydration.  271 
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Four selected formulations were selected for further tablet characterization as detailed 272 

in Table 2.  The pharmacopeial tests indicated a generally long disintegration time for 3D 273 

printed tablet structures. This is in agreement with recent reports in which polymer-rich 3D 274 

printed structures showed slow in vitro dissolution profiles despite the use of fast-dissolving 275 

polymers that are typically used for immediate release preparations [32, 43]. This in contrast 276 

to immediate release and fast disintegrating tablets are often composed with large portion of 277 

disintegrating fillers. The disintegration time was reported to be much shorter for the D-278 

mannitol based tablet (Table 2) compared to other fillers. Such disintegrants effect of D-279 

mannitol has been previously reported [44, 45].  280 

Despite the relatively large nozzle size used for the extrusion of polymeric structure 281 

(1.2 mm), the majority of fabricated tablets illustrated highly reproducible dimensions and 282 

weight (Table 2). The tablets also demonstrated pharmaceutically acceptable mechanical 283 

properties of friability (<1%). The in vitro dissolution of the fabricated tablets is shown in Fig. 284 

7. Modifying the percentage of sorbitol in the PVA matrix appeared to have a limited impact 285 

of the rate of theophylline release (Fig. 7a). The nature of dissolution seems also to be 286 

independent of the nature of the plasticiser sugar (Fig. 7b). This indicates that the theophylline 287 

release was mainly dominated by the erosion of PVA. As the dissolution medium penetrate 288 

through PVA matrix, drug release will take place through the erosion of the hydrate matrix and 289 

diffusion through the polymeric chain networks [46]. When other PVA grades with higher and 290 

lower molecular weight were incorporated in the tablets, drug release was dependent on the 291 

molecular weight of the PVA grade (Fig. 7c). This observation can be attributed to the 292 

reduction of water diffusion co-efficient with increased molecular weight of PVA [47]. On the 293 

other hand, the use of PVP as a base for 3D printed tablets resulted in theophylline release of 294 

>85% at 45 min in the gastric medium (Fig. 7d) and was compatible with the BP pharmacopeia 295 

for immediate release theophylline tablets. The fast dissolution rate from PVP matrix could be 296 

attributed to its solubility enhancing properties [48, 49]. Drug release from 3D printed tablets 297 

seemed to mimic that from tablets produced via FDM 3D printing [21, 24, 50]. Upon 298 

introduction to aqueous media, the polymer-rich structure of these tablets resulted in formation 299 

of gel-like layer [51]. Further acceleration to drug release could be achieved through design 300 

approach [43]. 301 

Despite the significant advances of the reported approach, it is confined to small batch 302 

manufacturing and is less suitable for large scale or continuous manufacturing. Although 303 

drying time is relatively brief, the combination of heat and water might accelerate drug 304 
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degradation particularly if hydrolysis-labile molecule is incorporated. The omittance of the 305 

drying process could be achieved by avoiding the use of solvent, however, this will involve use 306 

of high processing temperature or materials of low melting points. This highlights the 307 

importance of carefully selecting the 3D printing manufacturing approach to suit a particular 308 

active molecule and batch size. 309 

4. Conclusion 310 

We have reported a novel hybrid approach of combined temperature and solvent (water) to 311 

facilitate the additive manufacturing of immediate release tablets using simple extrusion. The 312 

proposed process was compatible with pharmaceutical grade hygroscopic polymers (PVA and 313 

PVP). We demonstrated that the starting material was compatible with a number of fillers 314 

(lactose, sorbitol and D-mannitol). The produced tablets demonstrated pharmacopeial 315 

acceptable weight and content uniformity and proved mechanically resistant. This reported 316 

hybrid approach offers significant advantages compared to other 3DP technologies:  i) 317 

replacing difficult-to-engineer FDM -compatible filament with a simpler powder or compact 318 

cylinder, ii) the use of a moderate temperature range (65-100 oC), iii) a brief drying period, and 319 

iv) avoiding the use of mechanically complicated and hard-to-clean direct extruder machinery. 320 

These novel features can provide hospital and compounding units with a simple, low-cost 321 

approach to dispense small batch of patient-customised tablets. However, for continuous 322 

manufacturing, removal of drying step, and hydrolysis labile drugs, other manufacturing 323 

approach could be considered.  324 

 325 

  326 
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sorbitol, (b) lactose and (c) D-mannitol], pharmaceutical ink (prior to addition of water) and 3D printed 340 
tablets.  341 

Fig. 5 XRD patterns of raw theophylline, PVA, Sodium stearyl fumarate (PRUV), filler [ (a) sorbitol, 342 
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 506 

Fig. 1. Equipment for TASFEX 3D printing. (a) The printer is equipped with a metal syringe surrounded by temperature-controlled heating jacket. The syringe 507 
is fitted with a luer-lock stainless steel needle, (b) The pharmaceutical ink (compressed powder) is added. The ink is then extruded by a piston pushed by 508 
computer-controlled stepper motor equipped with gear to produce (c) 3D printed tablet. 509 

  510 
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 511 

Fig. 2 Photographs of 3D printed tablets based on (a1) PVA and sorbitol, (b1) PVA and lactose and (c1) PVA and D-mannitol and (d1) PVP and lactose. SEM 512 
images of (a2, b2, c2 and d2) top view, (a3, b3, c3 and d3) side view, and (a4, b4, c4 and d42) cross sections of these tablets. 513 

  514 
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 515 

Fig. 3 TGA thermal degradation profiles of raw theophylline, PVA, Sodium stearyl fumarate (PRUV), filler [ (a) sorbitol, (b) lactose and (c) D-mannitol], 516 
pharmaceutical ink (prior to addition of water) and 3D printed tablets.  517 
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 518 

Fig. 4 DSC thermograph of raw theophylline, PVA, Sodium stearyl fumarate (PRUV), filler [(a) sorbitol, (b) lactose and (c) D-mannitol], pharmaceutical ink 519 
(prior to addition of water) and 3D printed tablets.  520 
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 521 

Fig. 5 XRD patterns of raw theophylline, PVA, Sodium stearyl fumarate (PRUV), filler [ (a) sorbitol, (b) lactose and (c) D-mannitol, pharmaceutical ink (prior 522 
to addition of water) and 3D printed tablets.  523 
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 524 

Fig. 6 3D Printed tablet based on poly(vinylpyridine) (PVP) (A) TGA thermal degradation profiles, (B) DSC thermograph profiles, (C) XRD patterns of raw 525 
theophylline, PVP, Sodium stearyl fumarate (PRUV), lactose, pharmaceutical ink (prior to addition of water) and 3D printed tablets. 526 
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 527 

Fig. 7 Impact of (a) sorbitol percentage, (b) nature of filler (sorbitol, lactose and D-mannitol), and (c) molecular weight of PVA on the in vitro dissolution of 528 
theophylline from 3D printed tablets, (d) in vitro dissolution of theophylline from 3D printed PVP based tablets (n= 3, ±SD). 529 


