79 research outputs found

    The possible role of heat shock protein-70 induction in collagen-induced arthritis in rats

    Get PDF
    Aim This study aimed to evaluate the possible role of heat shock protein-70 (HSP70) induction by 17-allylaminodemethoxygeldanamycin (17-AAG) in collagen-induced arthritis in rats. Material and methods Male Wistar rats were divided into five groups (n = 10/group) and were treated intraperitoneally twice a week for 4 weeks, namely normal control (saline), arthritis control (AR; saline), AR + 17-AAG, AR + methotrexate (MTX), and AR + 17-AAG + MTX. At the end of the treatments, arthritic score was determined and then the animals were sacrificed. Erythrocyte sedimentation rate (ESR), serum levels of HSP70, interleukin-17 (IL-17), tumor necrosis factor-alpha (TNF-α), rheumatic factor (RF), C-reactive protein (CRP), malondialdehyde (MDA), glutathione peroxidase (GPx), and matrix metalloproteinase-9 (MMP-9) were determined. Results In the AR group, all parameters increased significantly, except for GPx, which showed a pronounced decrease. The 17-AAG and/or MTX treatments significantly reduced arthritic score, ESR, IL-17, TNF-α, RF, CRP, MDA, and MMP-9 with significant increase in GPx compared to the AR group. The HSP70 level was significantly higher in the AR + 17-AAG and the AR + 17-AAG + MTX groups but significantly lower in the AR + MTX group as compared to the AR group. Also, it was significantly lower in the AR + MTX group as compared to the AR + 17-AAG group. Conclusion We concluded that HSP70 induction by 17-AAG attenuated the inflammatory process in a rheumatoid arthritis (RA) model induced by collagen, which suggested that HSP70 inducers can be promising agents in the treatment of RA

    An Efficient In Vitro Propagation Protocol of Cocoyam [Xanthosoma sagittifolium (L) Schott]

    Get PDF
    Sprouted corm sections of “South Dade” white cocoyam were potted and maintained in a greenhouse for 8 weeks. Shoot tips of 3–5 mm comprising the apical meristem with 4–6 leaf primordial, and approximately 0.5 mm of corm tissue at the base. These explants were treated to be used into the culture medium. A modified Gamborg's B5 mineral salts supplemented with 0.05 μM 1-naphthaleneacetic acid (NAA) were used throughout the study. Thidiazuron (TDZ) solution containing 0.01% dimethyl sulfoxide (DMSO) was used. Erlenmeyer flasks and test tubes were used for growing cultures. The effect of different media substrate, thidiazuron, and the interaction between TDZ and Benzylaminopurine (BAP) on cocoyam culture were tested. Results indicated that cocoyam can be successfully micropropagated in vitro through various procedures. All concentrations tested (5–20 μM BAP and 1–4 μM TDZ) produced more axillary shoots per shoot tip than the control without cytokinins. Greater proliferation rates were obtained through the use of 20 μM BAP and 2 μM TDZ, respectively, 12 weeks from initiation. Shoots produced with BAP were larger and more normal in appearance than those produced with TDZ, which were small, compressed, and stunted. The use of stationary liquid media is recommended for economic reasons

    Stability assessment of cinnarizine in self-emulsifying drug delivery systems

    Get PDF
    The current study was designed to evaluate the chemical and physical stability of cinnarizine within self-emulsifying drug delivery systems. According to International Conference of Harmonization guidelines, the selected formulations were enrolled into both accelerated and long-term stability studies up to 6 and 12 months, respectively. The chemical stability of the formulations was assessed periodically based on the intact cinnarizine level. The physical stability was evaluated based on the physical appearance and color change pattern of the formulations. The accelerated stability study revealed significant cinnarizine degradation in all the tested formulations at 3 and 6 months. All the tested formulations experienced sharp discoloration within 6 months of storage. On the other hand, the long-term stability study showed no significant cinnarizine degradation or color change within the formulations containing 100 % saturated medium chain glycerides (as oil component). While, the formulations containing 50 % unsaturated long chain fatty acids showed considerable drug degradation as well as significant discoloration. Accordingly, The formulations containing 100 % saturated medium chain glycerides provide excellent chemical and physical stability pattern and have the potential to provide a stable dosage form of cinnarizine.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Periosteal Flaps Enhance Prefabricated Engineered Bone Reparative Potential

    Get PDF
    The clinical translation of bone tissue engineering for reconstructing large bone defects has not advanced without hurdles. The in vivo bioreactor (IVB) concept may therefore bridge between bone tissue engineering and reconstructive surgery by employing the patient body for prefabricating new prevascularized tissues. Ideally, IVB should minimize the need for exogenous growth factors/cells. Periosteal tissues are promising for IVB approaches to prefabricate tissue-engineered bone (TEB) flaps. However, the significance of preserving the periosteal vascular supply has not been adequately investigated. This study assessed muscle IVB with and without periosteal/pericranial grafts and flaps for prefabricating TEB flaps to reconstruct mandibular defects in sheep. The sheep (n = 14) were allocated into 4 groups: muscle IVB (M group; n(M) = 3), muscle + periosteal graft (MP group; n(MP) = 4), muscle + periosteal flap (MVP group; n(MVP) = 4), and control group (n(Control) = 3). In the first surgery, alloplastic bone blocks were implanted in the brachiocephalic muscle (M) with a periosteal graft (MP) or with a vascularized periosteal flap (MVP). After 9 wk, the prefabricated TEB flaps were transplanted to reconstruct a mandibular angle defect. In the control group, the defects were reconstructed by non-prevascularized bone blocks. Computed tomography (CT) scans were performed after 13 wk and after 23 wk at termination, followed by micro-CT (mu CT) and histological analyses. Both CT and mu CT analysis revealed enhanced new bone formation and decreased residual biomaterial volume in the MVP group compared with control and MP groups, while the M group showed less new bone formation and more residual biomaterial. The histological analysis showed that most of the newly formed bone emerged from defect edges, but larger areas of new bone islands were found in MP and MVP groups. The MVP group showed enhanced vascularization and higher biomaterial remodeling rates. The periosteal flaps boosted the reconstructive potential of the prefabricated TEB flaps. The regenerative potential of the periosteum was manifested after the transplantation into the mechanically stimulated bony defect microenvironment.Peer reviewe

    Osteogenic Differentiation Potential of Human Bone Marrow and Amniotic Fluid-Derived Mesenchymal Stem Cells in Vitro & in Vivo

    Get PDF
    BACKGROUND: Cell therapies offer a promising potential in promoting bone regeneration. Stem cell therapy presents attractive care modality in treating degenerative conditions or tissue injuries. The rationale behind this is both the expansion potential of stem cells into a large cell population size and its differentiation abilities into a wide variety of tissue types, when given the proper stimuli. A progenitor stem cell is a promising source of cell therapy in regenerative medicine and bone tissue engineering. AIM: This study aimed to compare the osteogenic differentiation and regenerative potentials of human mesenchymal stem cells derived from human bone marrow (hBM-MSCs) or amniotic fluid (hAF-MSCs), both in vitro and in vivo studies. SUBJECTS AND METHODS: Human MSCs, used in this study, were successfully isolated from two human sources; the bone marrow (BM) and amniotic fluid (AF) collected at the gestational ages of second or third trimesters. RESULTS: The stem cells derived from amniotic fluid seemed to be the most promising type of progenitor cells for clinical applications. In a pre-clinical experiment, attempting to explore the therapeutic application of MSCs in bone regeneration, Rat lumbar spines defects were surgically created and treated with undifferentiated and osteogenically differentiated MSCs, derived from BM and second trimester AF. Cells were loaded on gel-foam scaffolds, inserted and fixed in the area of the surgical defect. X-Ray radiography follows up, and histopathological analysis was done three-four months post- operation. The transplantation of AF-MSCs or BM-MSCs into induced bony defects showed promising results. The AF-MSCs are offering a better healing effect increasing the likelihood of achieving successful spinal fusion. Some bone changes were observed in rats transplanted with osteoblasts differentiated cells but not in rats transplanted with undifferentiated MSCs. Longer observational periods are required to evaluate a true bone formation. The findings of this study suggested that the different sources; hBM-MSCs or hAF-MSCs exhibited remarkably different signature regarding the cell morphology, proliferation capacity and osteogenic differentiation potential CONCLUSIONS: AF-MSCs have a better performance in vivo bone healing than that of BM-MSCs. Hence, AF derived MSCs is highly recommended as an alternative source to BM-MSCs in bone regeneration and spine fusion surgeries. Moreover, the usage of gel-foam as a scaffold proved as an efficient cell carrier that showed bio-compatibility with cells, bio-degradability and osteoinductivity in vivo

    Optimization of self-nanoemulsifying formulations for weakly basic lipophilic drugs: role of acidification and experimental design

    Get PDF
    ABSTRACT Formulators face great challenges in adopting systematic approaches for designing self-nanoemulsifying formulations (SNEFs) for different drug categories. In this study, we aimed to build-up an advanced SNEF development framework for weakly basic lipophilic drugs, such as cinnarizine (CN). First, the influence of formulation acidification on CN solubility was investigated. Second, formulation self-emulsification in media with different pH was assessed. Experimentally designed phase diagrams were also utilized for advanced optimization of CN-SNEF. Finally, the optimized formulation was examined using cross polarizing light microscopy for the presence of liquid crystals. CN solubility was significantly enhanced upon external and internal acidification. Among the various fatty acids, oleic acid-based formulations showed superior self-emulsification in all the tested media. Surprisingly, formulation turbidity and droplet size significantly decreased upon equilibration with CN. The design was validated using oleic acid/Imwitor308/Cremophor El (25/25/50), which showed excellent self-nanoemulsification, 43-nm droplet size (for CN-equilibrated formulations), and 88 mg/g CN solubility. In contrast to CN-free formulations, CN-loaded SNEF presented lamellar liquid crystals upon 50% aqueous dilution. These findings confirmed that CN-SNEF efficiency was greatly enhanced upon drug incorporation. The adopted strategy offers fast and accurate development of SNEFs and could be extrapolated for other weakly basic lipophilic drugs

    Exploring the importance of within-canopy spatial temperature variation on transpiration predictions

    Get PDF
    Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux

    Genome-wide association study for systemic lupus erythematosus in an egyptian population

    Get PDF
    Systemic lupus erythematosus (SLE) susceptibility has a strong genetic component. Genome-wide association studies (GWAS) across trans-ancestral populations show both common and distinct genetic variants of susceptibility across European and Asian ancestries, while many other ethnic populations remain underexplored. We conducted the first SLE GWAS on Egyptians–an admixed North African/Middle Eastern population–using 537 patients and 883 controls. To identify novel susceptibility loci and replicate previously known loci, we performed imputation-based association analysis with 6,382,276 SNPs while accounting for individual admixture. We validated the association analysis using adaptive permutation tests (n = 109). We identified a novel genome-wide significant locus near IRS1/miR-5702 (Pcorrected = 1.98 × 10−8) and eight novel suggestive loci (Pcorrected 0.8) with lead SNPs from four suggestive loci (ARMC9, DIAPH3, IFLDT1, and ENTPD3) were associated with differential gene expression (3.5 × 10−95 < p < 1.0 × 10−2) across diverse tissues. These loci are involved in cellular proliferation and invasion—pathways prominent in lupus and nephritis. Our study highlights the utility of GWAS in an admixed Egyptian population for delineating new genetic associations and for understanding SLE pathogenesis

    Variations of the Circle of Willis in 100 Cadavers in Kerman Province

    Get PDF
    Abstract: Background & Aims: The relationship between variations of Willis circle and some cerebrovascular diseases has been shown in previous studies. A few studies have been conducted in Iran on these variations. Methods: This study was performed on 100 recently deceased Iranians due to car accidents who had been referred to Kerman Forensic Medicine Center for autopsy. The length and diameter of cerebral vessels were measured using glass plate method and variations of Willis circle were determined according to Lazorthes classification. Results: The sample included 81 males and 19 females aged 16-81 years. The two most prevalent forms of Willis circle were type 1 (50%) and type 4 (38%) according to Lazorthes classification. Asymmetry and hypoplasia were seen in 51% and 61% of cases respectively. Asymmetry was most often seen in the left posterior communication artery. There was no significant relationship between the presence of asymmetry in anterior cerebral arteries and the size of anterior communicating artery. Moreover, the size of the posterior communication artery had not been affected by the presence of asymmetry in the posterior cerebral arteries. Conclusion: However, the anatomical variations found in this study were similar to those in the literature, racial similarities among the studied populations do not allow to exclude the role of race on the variations of Willis circle. The difference between common variations in the cadaver and in vivo studies hypothesizes that radiological studies during life are more appropriate to show the role of race on the variations of the circle of Willis. Nonsignificant relationships between the size of communication arteries and anterior and posterior cerebral arteries support this hypothesis. Keywords: Aneurysm, Circle of Willis, Kerman, Variatio

    Combined Self-Nanoemulsifying and Solid Dispersion Systems Showed Enhanced Cinnarizine Release in Hypochlorhydria/Achlorhydria Dissolution Model

    No full text
    The study aims to design a novel combination of drug-free solid self-nanoemulsifying drug delivery systems (S-SNEDDS) + solid dispersion (SD) to enhance cinnarizine (CN) dissolution at high pH environment caused by hypochlorhydria/achlorhydria. Drug-loaded and drug-free liquid SNEDDS were solidified using Neusilin® US2 at 1:1 and 1:2 ratios. Various CN-SDs were prepared using freeze drying and microwave technologies. The developed SDs were characterized by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). In-vitro dissolution studies were conducted to evaluate CN formulations at pH 6.8. Drug-free S-SNEDDSs showed acceptable self-emulsification and powder flow properties. DSC and XRD showed that CN was successfully amorphized into SDs. The combination of drug-free S-SNEDDS + pure CN showed negligible drug dissolution due to poor CN migration into the formed nanoemulsion droplets. CN-SDs and drug-loaded S-SNEDDS showed only 4% and 23% dissolution efficiency (DE) while (drug-free S-SNEDDS + FD-SD) combination showed 880% and 160% enhancement of total drug release compared to uncombined SD and drug-loaded S-SNEDDS, respectively. (Drug-free S-SNEDDS + SD) combination offer a potential approach to overcome the negative impact of hypochlorhydria/achlorhydria on drug absorption by enhancing dissolution at elevated pH environments. In addition, the systems minimize the adverse effect of adsorbent on drug release
    corecore