116 research outputs found

    EuroSpine Task Force on Research: support for spine researchers

    Get PDF
    In recognition of the value of research to the practice of spine care, Federico Balagué and Ferran Pellisé, at the time President and Secretary for EuroSpine, asked Margareta Nordin to set up a Task Force on Research (TFR) for EuroSpine during summer 2011. The concept was to stimulate and facilitate a research community within the society, through two main functions: (1) distribution of EuroSpine funds to researchers; (2) develop and deliver research training/education courses. What has the EuroSpine TFR accomplished since its inception

    GET WELL: an automated surveillance system for gaining new epidemiological knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The assumption behind the presented work is that the information people search for on the internet reflects the disease status in society. By having access to this source of information, epidemiologists can get a valuable complement to the traditional surveillance and potentially get new and timely epidemiological insights. For this purpose, the Swedish Institute for Infectious Disease Control collaborates with a medical web site in Sweden.</p> <p>Methods</p> <p>We built an application consisting of two conceptual parts. One part allows for trends, based on user specified requests, to be extracted from anonymous web query data from a Swedish medical web site. The second conceptual part permits tailored analyses of particular diseases, where more complex statistical methods are applied to the data. To evaluate the epidemiological relevance of the output, we compared Google search data and search data from the medical web site.</p> <p>Results</p> <p>In the paper, we give concrete examples of the output from the web query-based system. We also present results from the comparison between data from the search engine Google and search data from the national medical web site.</p> <p>Conclusions</p> <p>The application is in regular use at the Swedish Institute for Infectious Disease Control. A system based on web queries is flexible in that it can be adapted to any disease; we get information on other individuals than those who seek medical care; and the data do not suffer from reporting delays. Although Google data are based on a substantially larger search volume, search patterns obtained from the medical web site may still convey more information from an epidemiological perspective. Furthermore we can see advantages with having full access to the raw data.</p

    Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)

    Get PDF
    The occurrence ofAnaplasma phagocytophilumwas investigated in spleen and serum samplesfrom Swedish moose (Alces alces) in southern Sweden (island and mainland). Samples wereanalysed for presence ofA. phagocytophilumDNA by real-time PCR (n=263), and forAnaplasmaantibodies with ELISA serology (n=234). All serum samples had antibodies againstA. phagocytophilum. The mean DNA-based prevalence was 26·3%, and significant (

    Extraforaminal ligament attachments of the thoracic spinal nerves in humans

    Get PDF
    An anatomical study of the extraforaminal attachments of the thoracic spinal nerves was performed using human spinal columns. The objectives of the study are to identify and describe the existence of ligamentous structures at each thoracic level that attach spinal nerves to structures at the extraforaminal region. During the last 120 years, several mechanisms have been described to protect the spinal nerve against traction. All the described structures were located inside the spinal canal proximal to the intervertebral foramen. Ligaments with a comparable function just outside the intervertebral foramen are mentioned ephemerally. No studies are available about ligamentous attachments of thoracic spinal nerves to the spine. Five embalmed human thoracic spines (Th2–Th11) were dissected. Bilaterally, the extraforaminal region was dissected to describe and measure anatomical structures and their relationships with the thoracic spinal nerves. Histology was done at the sites of attachment of the ligaments to the nerves and along the ligaments. The thoracic spinal nerves are attached to the transverse process of the vertebrae cranial and caudal to the intervertebral foramen. The ligaments consist mainly of collagenous fibers. In conclusion, at the thoracic level, direct ligamentous connections exist between extraforaminal thoracic spinal nerves and nearby structures. They may serve as a protective mechanism against traction and compression of the nerves by positioning the nerve in the intervertebral foramen

    Using combined diagnostic test results to hindcast trends of infection from cross-sectional data

    Get PDF
    Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time
    • 

    corecore