243 research outputs found

    Joint Alignment and Modeling of Correlated Behavior Streams

    Get PDF
    The Variable Time-Shift Hidden Markov Model (VTS- HMM) is proposed for learning and modeling pairs of cor- related streams. Unlike previous coupled models for time series, the VTS-HMM accounts for varying time shifts be- tween correlated events in pairs of streams having different properties. The VTS-HMM is learned on a set of pairs of unaligned streams and, thus, learning entails simultaneous estimation of the varying time shifts and of the parameters of the model. The formulation is demonstrated in the analysis of videos of dyadic social interactions between children and adults in the Multimodal Dyadic Behavior Dataset (MMDB). In dyadic social interactions, an agent starts an interaction with one or more \u201cinitiating behaviors\u201d that elicit one or more \u201cresponding behaviors\u201d from the partner within a temporal window. The proposed VTS-HMM explicitly accounts for varying time shifts between initiating and responding behaviors in these behavior streams. The experiments confirm that modeling of these varying time shifts in the VTS-HMM can yield improved estimation of the level of engagement of the child and adult and more accurate dis- crimination among complex activities

    Bioreactor technologies to support liver function in vitro

    Get PDF
    Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.National Institutes of Health (U.S.) (R01 EB010246)National Institutes of Health (U.S.) (P50-GM068762-08)National Institutes of Health (U.S.) (R01-ES015241)National Institutes of Health (U.S.) (P30-ES002109)5UH2TR000496-02National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (CBET-0939511)United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039

    Demonstration of Metabolic and Cellular Effects of Portal Vein Ligation Using Multi-Modal PET/MRI Measurements in Healthy Rat Liver.

    Get PDF
    OBJECTIVES: In the early recognition of portal vein ligation (PVL) induced tumor progression, positron emission tomography and magnetic resonance imaging (PET/MRI) could improve diagnostic accuracy of conventionally used methods. It is unknown how PVL affects metabolic patterns of tumor free hepatic tissues. The aim of this preliminary study is to evaluate the effect of PVL on glucose metabolism, using PET/MRI imaging in healthy rat liver. MATERIALS AND METHODS: Male Wistar rats (n = 30) underwent PVL. 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET/MRI imaging (nanoScan PET/MRI) and morphological/histological examination were performed before (Day 0) and 1, 2, 3, and 7 days after PVL. Dynamic PET data were collected and the standardized uptake values (SUV) for ligated and non-ligated liver lobes were calculated in relation to cardiac left ventricle (SUVVOI/SUVCLV) and mean liver SUV (SUVVOI/SUVLiver). RESULTS: PVL induced atrophy of ligated lobes, while non-ligated liver tissue showed compensatory hypertrophy. Dynamic PET scan revealed altered FDG kinetics in both ligated and non-ligated liver lobes. SUVVOI/SUVCLV significantly increased in both groups of lobes, with a maximal value at the 2nd postoperative day and returned near to the baseline 7 days after the ligation. After PVL, ligated liver lobes showed significantly higher tracer uptake compared to the non-ligated lobes (significantly higher SUVVOI/SUVLiver values were observed at postoperative day 1, 2 and 3). The homogenous tracer biodistribution observed before PVL reappeared by 7th postoperative day. CONCLUSION: The observed alterations in FDG uptake dynamics should be taken into account during the assessment of PET data until the PVL induced atrophic and regenerative processes are completed

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF
    corecore