509 research outputs found
Analysis of defect structure in silicon. Silicon sheet growth development for the large area silicon sheet task of the Low-Cost Solar array Project
One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope
Cutaneous Burn Injury Promotes Shifts in the Bacterial Microbiome in Autologous Donor Skin: Implications for Skin Grafting Outcomes
INTRODUCTION:
The cutaneous microbiome maintains skin barrier function, regulates inflammation, and stimulates wound-healing responses. Burn injury promotes an excessive activation of the cutaneous and systemic immune response directed against commensal and invading pathogens. Skin grafting is the primary method of reconstructing full-thickness burns, and wound infection continues to be a significant complication.
METHODS:
In this study, the cutaneous bacterial microbiome was evaluated and subsequently compared to patient outcomes. Three different full-thickness skin specimens were assessed: control skin from non-burned subjects; burn margin from burn patients; and autologous donor skin from the same cohort of burn patients.
RESULTS:
We observed that skin bacterial community structure of burn patients was significantly altered compared with control patients. We determined that the unburned autologous donor skin from burn patients exhibits a microbiome similar to that of the burn margin, rather than unburned controls, and that changes in the cutaneous microbiome statistically correlate with several post-burn complications. We established that Corynebacterium positively correlated with burn wound infection, while Staphylococcus and Propionibacterium negatively correlated with burn wound infection. Both Corynebacterium and Enterococcus negatively correlated with the development of sepsis.
CONCLUSIONS:
This study identifies distinct differences in the cutaneous microbiome between burn subjects and unburned controls, and ascertains that select bacterial taxa significantly correlate with several comorbid complications of burn injury. These preliminary data suggest that grafting donor skin exhibiting bacterial dysbiosis may augment infection and/or graft failure and sets the foundation for more in-depth and mechanistic analyses in presumably "healthy" donor skin from patients requiring skin grafting procedures
Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests
Selective logging is responsible for approximately 50 % of human-induced disturbances in tropical forests. The magnitude of disturbances from logging on the structure of forests varies widely and is associated with a multitude of impacts on the forest microclimate. However, it is still unclear how changes in the spatial arrangement of vegetation arising from selective logging affect the capacity of forests to buffer large-scale climate (i.e., macroclimate) variability. In this study, we leveraged hundreds of terrestrial LiDAR measurements across tropical forests in Malaysian Borneoto quantify the impacts of logging on canopy structural traits, using a space-for-time approach. This information was combined with locally measured microclimate temperatures of the forest understory to evaluate how logging disturbances alter the capacity of tropical forests to buffer macroclimate variability. We found that heavily logged forests were approximately 12 m shorter and had 65 % lower plant area density than unlogged forests, with most plant material allocated in the first 10 m above ground. Heavily logged forests were on average 1.5 °C warmer than unlogged forests. More strikingly, we show that subtle changes in the forest structure were sufficient to reduce the cooling capacity of forests during extremely warm days (e.g., anomalies > 2σ), while understory temperatures in heavily logged forests were often warmer than the macroclimate under the same conditions. Our results thus demonstrate that selective logging is associated with substantial changes in the fine-scale thermal regime of the understory. Hence, mitigating and managing logging disturbances will be critical for maintaining niches and thermal limits within tropical forests in the future
Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?
Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements
Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases.
Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases
Cutaneous Burn Injury Modulates Urinary Antimicrobial Peptide Responses and the Urinary Microbiome
OBJECTIVES:
Characterization of urinary bacterial microbiome and antimicrobial peptides after burn injury to identify potential mechanisms leading to urinary tract infections and associated morbidities in burn patients.
DESIGN:
Retrospective cohort study using human urine from control and burn subjects.
SETTING:
University research laboratory.
PATIENTS:
Burn patients.
INTERVENTIONS:
None.
MEASUREMENTS AND MAIN RESULTS:
Urine samples from catheterized burn patients were collected hourly for up to 40 hours. Control urine was collected from "healthy" volunteers. The urinary bacterial microbiome and antimicrobial peptide levels and activity were compared with patient outcomes. We observed a significant increase in urinary microbial diversity in burn patients versus controls, which positively correlated with a larger percent burn and with the development of urinary tract infection and sepsis postadmission, regardless of age or gender. Urinary psoriasin and β-defensin antimicrobial peptide levels were significantly reduced in burn patients at 1 and 40 hours postadmission. We observed a shift in antimicrobial peptide hydrophobicity and activity between control and burn patients when urinary fractions were tested against Escherichia coli and Enterococcus faecalis urinary tract infection isolates. Furthermore, the antimicrobial peptide activity in burn patients was more effective against E. coli than E. faecalis. Urinary tract infection-positive burn patients with altered urinary antimicrobial peptide activity developed either an E. faecalis or Pseudomonas aeruginosa urinary tract infection, suggesting a role for urinary antimicrobial peptides in susceptibility to select uropathogens.
CONCLUSIONS:
Our data reveal potential links for urinary tract infection development and several morbidities in burn patients through alterations in the urinary microbiome and antimicrobial peptides. Overall, this study supports the concept that early assessment of urinary antimicrobial peptide responses and the bacterial microbiome may be used to predict susceptibility to urinary tract infections and sepsis in burn patients
Working Memory and Response Inhibition as One Integral Phenotype of Adult ADHD? A Behavioral and Imaging Correlational Investigation
Objective: It is an open question whether working memory (WM) and response inhibition (RI) constitute one integral phenotype in attention deficit hyperactivity disorder (ADHD).
Method: The authors investigated 45 adult ADHD patients and 41 controls comparable for age, gender, intelligence, and education during a letter n-back and a stop-signal task, and measured prefrontal oxygenation by means of functional near-infrared spectroscopy.
Results: The authors replicated behavioral and cortical activation deficits in patients compared with controls for both tasks and also for performance in both control conditions. In the patient group, 2-back performance was correlated with stop-signal reaction time. This correlation did not seem to be specific for WM and RI as 1-back performance was correlated with go reaction time. No significant correlations of prefrontal oxygenation between WM and RI were found. Conclusion: The authors’ findings do not support the hypothesis of WM and RI representing one integral phenotype of ADHD mediated by the prefrontal cortex
Clinical experience with adaptive MRI-guided pancreatic SBRT and the use of abdominal compression to reduce treatment volume
IntroductionThis work presents a method to treat stereotactic body radiation therapy (SBRT) for pancreatic cancer on a magnetic resonance-guided linear accelerator (MR-linac) using daily adaptation, real-time motion monitoring, and abdominal compression.MethodsThe motion management and treatment planning process involves a magnetic resonance imaging (MRI) simulation with cine and 3D images, a computed tomography (CT) simulation with a breath-hold CT and a 4DCT, pre-treatment verification and planning MRI, and intrafraction MRI cine images.ResultsThe results from 26 patients were included in this work. Our motion management process results in consistent motion analysis on the CT simulation, MRI simulation, and each treatment fraction. The liver dome was found to be an overestimate of tumor superior/inferior (SI) motion for most patients. Adding compression reduced SI liver dome motion by 6.2 mm on average. Clinical outcomes are similar to those observed in the literature.ConclusionsIn this work, we demonstrate how pancreatic SBRT can be successfully treated on an MR-linac using abdominal compression. This allows for an increased duty cycle compared to gating and/or breath-hold techniques
- …