196 research outputs found

    (Co)constructing critical pedagogies: Expanding on our department’s approach to language teaching

    Get PDF
    In this report, we—the members of a curriculum working group (CWG) in Penn State’s German department—describe our efforts to decenter our German language sequence by integrating critical pedagogies into our department’s existing communicative language teaching (CLT) approach. We trace our process towards this goal, beginning with an exploration into and analysis of two critical pedagogies, namely Antiracist Pedagogy (ARP) and Social Justice Pedagogy (SJP). We ultimately adopt SJP because we find it to be a better fit for our purposes in German language instruction. We offer a framework to evaluate and didacticize existing as well as newly created course materials, guided by social justice (SJ) learning objectives. To illustrate our work, we describe the creation and implementation of an instructional unit in an intermediate German language course. Reflections from this course’s instructor and student reactions concerning this unit’s instruction—as well as SJP in the language classroom in general—make evident the importance of critical perspectives regarding curricular development in fostering equitable classrooms

    Effect of age on discrimination learning, reversal learning, and cognitive bias in family dogs

    Get PDF
    Several studies on age-related cognitive decline in dogs involve laboratory dogs and prolonged training. We developed two spatial tasks that required a single 1-h session. We tested 107 medium-large sized dogs: \u201cyoung\u201d (N=41, aged 2.5\u20136.5 years) and \u201cold\u201d (N=66, aged 8\u201314.5 years). Our results indicated that, in a discrimination learning task and in a reversal learning task, young dogs learned significantly faster than the old dogs, indicating that these two tasks could successfully be used to investigate differences in spatial learning between young and old dogs. We also provide two novel findings. First, in the reversal learning, the dogs trained based on the location of stimuli learned faster than the dogs trained based on stimulus characteristics. Most old dogs did not learn the task within our cut-off of 50 trials. Training based on an object\u2019s location is therefore more appropriate for reversal learning tasks. Second, the contrast between the response to the positive and negative stimuli was narrower in old dogs, compared to young dogs, during the reversal learning task, as well as the cognitive bias test. This measure favors comparability between tasks and between studies. Following the cognitive bias test, we could not find any indication of differences in the positive and negative expectations between young and old dogs. Taken together, these findings do not support the hypothesis that old dogs have more negative expectations than young dogs and the use of the cognitive bias test in older dogs requires further investigation

    Genetic and ecological consequences of recent habitat fragmentation in a narrow endemic plant species within an urban context

    Get PDF
    Understanding the timescales that shape spatial genetic structure is pivotal to ascertain the impact of habitat fragmentation on the genetic diversity and reproductive viability of long-lived plant populations. Combining genetic and ecological information with current and past fragmentation conditions allows the identification of the main drivers important in shaping population structure and declines in reproduction, which is crucial for informing conservation strategies. Using historic aerial photographs, we defined the past fragmentation conditions for the shrub Conospermum undulatum, a species now completely embedded in an urban area. We explored the impact of current and past conditions on its genetic layout and assessed the effects of genetic and environmental factors on its reproduction. The historically high structural connectivity was evident in the genetics of the species. Despite the current intense fragmentation, we found similar levels of genetic diversity across populations and a weak spatial genetic structure. Historical connectivity was negatively associated with genetic differentiation among populations and positively related to within-population genetic diversity. Variation partitioning of reproductive performance explained ~ 66% of the variance, showing significant influences for genetic (9%), environmental (15%), and combined (42%) fractions. Our study highlights the importance of considering the historical habitat dynamics when investigating fragmentation consequences in long-lived plants. A detailed characterization of fragmentation from 1953 has shown how low levels of genetic fixation are due to extensive gene flow through the non-fragmented landscape. Moreover, knowledge of the relationships between genetic and environmental variation and reproduction can help to implement effective conservation strategies, particularly in highly dynamic landscapes

    Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    Get PDF
    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L.) plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs). Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot hST ranged from 0.025 to 0.124). The proportion of within-population genetic variation due to genetic substructuring (FCluPlot = 0.067) was higher than the differentiation among the 10 plots (FPlotTot = 0.045). Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i) genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii) indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general

    Looking for local adaptation:Convergent microevolution in aleppo pine (pinus halepensis)

    Get PDF
    Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation

    Exploring the Prognostic Performance of MECKI Score in Heart Failure Patients with Non-Valvular Atrial Fibrillation Treated with Edoxaban

    Get PDF
    Introduction: Risk stratification in heart failure (HF) is essential for clinical and therapeutic management. The Metabolic Exercise test data combined with Cardiac and Kidney Indexes (MECKI) score is a validated prognostic model for assessing cardiovascular risk in HF patients with reduced ejection fraction (HFrEF). From the validation of the score, the prevalence of HF patients treated with direct oral anticoagulants (DOACs), such as edoxaban, for non-valvular atrial fibrillation (NVAF) has been increasing in recent years. This study aims to evaluate the reliability of the MECKI score in HFrEF patients treated with edoxaban for NVAF. Materials and Methods: This study included consecutive outpatients with HF and NVAF treated with edoxaban (n = 83) who underwent a cardiopulmonary exercise test (CPET). They were matched by propensity score with a retrospective group of HFrEF patients with NVAF treated with vitamin K antagonists (VKAs) from the MECKI score registry (n = 844). The study endpoint was the risk of cardiovascular mortality, urgent heart transplantation, or Left Ventricle Assist Device (LVAD) implantation. Results: Edoxaban patients were treated with a more optimized HF therapy and had different clinical characteristics, with a similar MECKI score. After propensity score, 77 patients treated with edoxaban were successfully matched with the MECKI-VKA control cohort. In both groups, MECKI accurately predicted the composite endpoint with similar area under the curves (AUC = 0.757 vs. 0.829 in the MECKI-VKA vs. edoxaban-treated group, respectively, p = 0.452). The two populations’ survival appeared non-significantly different at the 2-year follow-up. Conclusions: this study confirms the prognostic accuracy of the MECKI score in HFrEF patients with NVAF treated with edoxaban, showing improved predictive power compared to VKA-treated patients

    Marginality indices for biodiversity conservation in forest trees

    Get PDF
    Marginal and peripheral populations are important for biodiversity conservation. Their original situation in a species’ geographic and ecological space often confers them genetic diversity and traits of high adaptive value. Yet theoretical hypotheses related to marginality are difficult to test because of confounding factors that influence marginality, namely environment, geography, and history. There is an urgent need to develop metrics to disentangle these confounding factors. We designed nine quantitative indices of marginality and peripherality that define where margins lie within species distributions, from a geographical, an environmental and a historical perspective. Using the distribution maps of eight European forest tree species, we assessed whether these indices were idiosyncratic or whether they conveyed redundant information. Using a database on marginal and peripheral populations based on expert knowledge, we assessed the capacity of the indices to predict the marginality status of a population. There was no consistent pattern of correlation between indices across species, confirming that the indices conveyed different information related to the specific geometry of the species distributions. Contrasting with this heterogeneity of correlation patterns across species, the relative importance of the indices to predict the marginality status of populations was consistent across species. However, there was still a significant country effect in the marginality status, showing a variation in expert opinion of marginality vis-á-vis the species distribution. The marginality indices that we developed are entirely based on distribution maps and can be used for any species. They pave the way for testing hypotheses related to marginality and peripherality, with important implications in quantitative ecology, genetics, and biodiversity conservation
    • 

    corecore